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Abstract 
 

Since hippocampal volume measurement is often used 
in studying Alzheimer’s disease to assess disease 
progression, automatic hippocampus segmentation is an 
important task in clinical applications. However, it is a 
challenging task due to its small size, complex shape, 
fuzzy boundaries, partial volume effects, and anatomical 
variability. In this paper we propose a new registration 
method to segment the hippocampus from brain MRI 
images automatically. It uses a combination of local affine 
transformation and optical flow based non-rigid 
registration, which has the advantages of modifying the 
larger geometric deformation and intensity differences 
simultaneously. Meanwhile the residual subtle differences 
decrease due to the high degree of freedom. Quantitative 
evaluation with respect to manual segmentation is 
performed on 10 subjects with the spatial overlap (KI 
value) as the evaluation criterion. The average KI with the 
proposed method is 0.7749, while it is 0.5811 with another 
semi-automatic method, ITK-SNAP. It is indicated that the 
proposed method is more accurate and will be a good 
choice for hippocampus segmentation. 
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1. Introduction 
 

In recent years, the analysis of anatomical structures 
from medical images develops rapidly [1][2][3][4][5] due 
to the widespread research on brain functions and brain 
disorders. Brain internal structures play a central role in 
the intellectual capabilities of the human brain. 
Additionally, these structures are also relevant to a set of 
clinical conditions, such as Alzheimer’s disease. 
Alzheimer’s disease (AD) is the most common cause of 
dementia worldwide. As the world’s population ages, the 
number of people with Alzheimer’s disease has a large 
increase. AD therefore presents an increasing 
socio-economic burden with each person affected 
representing both great personal loss and increased 
economic cost [6]. A large number of studies have shown 
that hippocampal volume is lower in AD subjects [7][8]. 
Since hippocampal volume change is usually expressed as 
a percentage loss per year, volume measurement of the 
probable AD will be useful in tracking disease progression 
or specific disease-related effects of treatment.  

However, segmenting brain internal structures remains 
a challenging task due to their small size, partial volume 
effects, anatomical variability, and the lack of clearly 
defined edges [9][10]. Therefore manual delineation has 
been used for most MRI-based hippocampal volume 
studies [7][11] and this is currently considered to be the 
gold standard for hippocampal measurement. However, 
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manual segmentation is both time consuming and requires 
trained operators in large studies and clinical trials. 
Therefore it is necessary to find accurate automatic 
segmentation methods close to manual delineation.  

A variety of computer-assisted methods has been 
studied to automatically segment brain internal structures 
of which the hippocampus is one [12]. We can cite 
deformable models or active contour evolution based 
methods [13][14][15][16][17], which can be good 
solutions to the problem because of their abilities to 
capture the information of the shapes or structures of 
interest. However the initialization of these methods prior 
to deformation remains difficult. Another crucial 
technology is image registration [1][2][18][19][20][21]. 
These methods rely on a reference image volume in which 
structures of interest have been carefully segmented by 
experts. To segment a new image volume, a 
transformation that registers the reference volume to the 
target volume is computed, which gives a spatial 
correspondence between the two image volumes. Then 
regions labeled in the reference volume can be projected 
onto the volume of interest. The key of this approach is to 
design a method being capable of computing the 
transformation in a reliable and accurate way. These 
methods take advantage of the prior knowledge, which is 
explicitly provided by the atlas (segmented reference 
volume), such as structure shape, relative positions 
between the structures. This allows helping the 
segmentation of the anatomical structures without clearly 
defined contours, which motivates the present work.  

The adopted method in this paper, Demons registration 
[22], belongs to intensity based non-rigid registration 
algorithm. It has high ability to model local deformation 
and has been used in medical image registration 
[22][23][24][25] successfully. However the requirements 
of intensity correspondence and small initial deformation 
between homologous structures put some limitations on it. 
In general global rigid or affine transformation and simple 
histogram match were often used to solve the problem 

[1][26][27][28][29], but they were not ideal solutions. 
Therefore, we propose to implement the preprocess using 
a local affine transformation methods, which has the 
advantages of modifying the larger geometric deformation 
and intensity differences simultaneously [30]. Then the 
Demons registration with higher degree of freedom is used 
to cope with the residual subtle differences.  
 

2. Methods 
 
2.1 Intensity and spatial normalization 
 

The designed model of the local affine transformation 
to get the intensity match and the rough spatial match is 
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where  are position parameters,  

are brightness and contrast parameters, and a temporal 
parameter  is used to distinguish the two images. This 

model has the advantages that not only the geometric 
shape and image intensity can be modified simultaneously, 
but also larger deformation problems can be solved 
effectively. This is just to meet the needs of the Demons 
algorithm and enables it a perfect option for preprocessing. 
The error function is 
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where ω  denotes a small spatial neighborhood. By 

minimizing Equation (2), the expected optimized model 
parameters can be obtained. Since the error function is 
nonlinear with respect to its unknown parameters, it is 
unable to get its analytical solutions. Therefore, the error 
function is approximated using its first-order truncated 
Taylor series expansion, which is 
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Now the error function can be easily minimized 
analytically by differentiating with respect to the unknown 
parameters and yields the solutions 
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To guarantee the invertible attributes of the first term in 
equation (5), the local affine and contrast/brightness 
parameters in equation (4) should be defined over a large 
enough spatial neighborhoods with sufficient image 
content. However, according to equation (4), the local 
affine and contrast/brightness parameters are assumed to 
be constant over a small spatial neighborhood. So there 
should be a tradeoff in choosing the size of the 
neighborhood or an alternative smoothness constraint 
should be added to make the assumption reasonable. The 
modified error function in this way is 
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which embodies the smoothness constraint. The derivative 
of  with respect to the model parameters is  ( )E m
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2 [ ] 2 [ ]TdE m
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where，m  is the component-wise average of m  over a 

small spatial neighborhood, iλ  is a positive constant that 

controls the relative weight given to the smoothness 

constraint on parameter , and  is a 8im L 8×  diagonal 

matrix with diagonal elements iλ , and zero off the 

diagonal. Setting ( ) / 0dE m dm =  yields the iterative 

solution for parameters m  
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After preprocess, a rough match is acquired. Then subtle 
differences are corrected using the Demons registration 
algorithm.  
 

2.2 Non-rigid registration 
 

The main idea of the Demons registration algorithm is 
to consider the non-rigid registration as a diffusion process. 
Proper ‘gatekeepers’ are put into in the target image , 

which have the same roles as ‘demons’ in 
thermodynamics. The source image 

S

M  is considered as 
a deformable grid, in which each vertex is labeled with 
‘inside’ and ‘outside’. The polarity of each grid vertex is 
related with its intensity, which determines the orientation 
of the force in this point. Suppose the intensity of each 
Demons point  in  is p S ( )s p = I , and the intensity 

of the corresponding point in M  is ,  is 

labeled outside and its force orientation is according to 

( )m p p

s−∇ if ( )m p I< ; Otherwise, it is labeled inside and its 

force orientation is according to s+∇ . M  deformed 
continuously until it was as similar as .  S

Demons algorithm is a general scheme and can be 
applied to many fields by varying its variants. In this 
paper we focus on medical image registration and the 
suggested suitable combination [22] is: (1) All pixels of 

 are ‘demons’; (2)  is a free form deformation, 

smoothed by a Gaussian filter; (3) Linear interpolation 
method; (4) The Demons force is based on optical flow 
field theory. The assumption in optical flow field is 
intensity preservation in image moving process, that is: 

S T
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Generally  is considered simply as a displacement. 
Since equation (12) is unstable for small values of 

v
s∇ , an 

additional term is added, which generates the equation 
(13). 
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This algorithm is based on the implicit assumption that 
the intensities of two corresponding voxels are equal, and 
seeks to maximize the intensity similarity using the sum of 
squared difference between a source image and a target 
image. However this condition is seldom fulfilled in 
real-world medical image registration without intensity 
normalization, because there are many factors that may 
affect observed intensity of a tissue over the imaged field, 
such as the different scanner or scanning parameters, 
normal aging, different subjects, and so on. Another 
assumption in Demons registration is of a small 
deformation between the source image and the target 
image, which is also not true in inter-subject registration. 
Therefore, preprocessing before applying Demons 
registration is necessary. Or else, it might be failed or less 
effective when registering two subjects with large 
deformation and/or intensity differences [23][26][31]. For 
intensity normalization, a simple scaling of the intensities 
considering mean and standard deviation normalization 
often appears to be insufficient since the relationship 
between voxel intensities of two images can be non-linear, 
in particular when both images come from different 

scanners. So the commonly used preprocessing techniques 
are based on image histogram or joint histogram [23][24]. 
For spatial normalization, global rigid or affine 
transformation is often used as initialization of a following 
nonlinear registration [29]. Since it is difficult to estimate 
the geometric and intensity changes simultaneously, most 
preprocessing methods adjust shape and intensity 
respectively. However, a stepwise adjustment influences 
each other as space normalization depends on the intensity 
consistency of the corresponding structures, while 
intensity normalization is also dependent on the spatial 
correspondence. Fortunately the adopted local affine 
transformation described in section 2.1 is more effective 
to deal with larger deformation and can modify 
simultaneously the geometric shape and intensity 
differences despite its limited ability in registering subtle 
deformation due to the necessary size of the sub-regions. 
Therefore, it is reasonable to combine the two registration 
algorithm to complete the segmentation task. After local 
affine transformation with adaptively intensity correction, 
the shape differences and the intensity variations between 
the reference image and the floating image will be small 
enough to satisfy the assumption of Demons algorithm. 
This enables the Demons registration algorithm more 
effectively to deal with subtle local differences. 
 

3. Experiments and results 
 

Two experiments were carried out to assess the 
performance of the proposed segmentation method. The 
first was synthetic deformation experiment, in which the 
SPL [32] standard reference image (obtained from the 
Surgical Planning Laboratory of Harvard Medical School) 
and the corresponding atlas were deformed using an 
analytic harmonic deformation approach [33]. Then the 
reference image was registered to the deformed image to 
get the deformation field. Finally the acquired 
segmentation result using the deformation field was 
compared with the real segmentation, the deformed atlas. 
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Ten volumes were used in this experiment. The second 
experiment consists of a segmentation performance 
comparison between the proposed method and public 
brain structures segmentation software, ITK-SNAP [34], 
using ten real data. ITK-SNAP provides semi-automatic 
segmentation using active contour methods, as well as 
manual delineation and image navigation. The 
mathematical theory behind snake evolution in SNAP and 
the user guide can be found in [34] and the website 
http://www.itksnap.org/, respectively. A number of steps 
requiring manual user input are described in the SNAP 
tutorial, including (1) choose the type of the feature image 
to be used, (2) select the parameters used to compute the 
feature image, (3) initialize the snake using spherical 
bubbles, and (4) choose the relative weights of the 
different types of velocities that drive snake evolution. In 
the experiment, those parameters are set carefully after 
adequate practices in order to ensure fair comparisons as 
far as possible.  
 

3.1. Materials 
 

The SPL reference image consists of 256×256×160 
voxels with a spatial resolution of 
0.9375mm×0.9375mm×1.5 mm. The test images were 
imaged with 1.5T GE scanner, and Axial 3D IR 

T1-weighted (TI/TR/TE: 600/10/2) acquired using a fast 
gradient echo with inversion recovery sequence. Each 
dataset (volume) consists of 256×256×124 voxels, and the 
resolution of each voxel is 0.9375mm×0.9375mm×1.5 
mm. Both larger intensity difference between the 
reference image and the test image due to different scan 
equipment and the individual morphology differences 
between subjects can be observed, that makes the 
registration difficult. 
 

3.2. Results 
 
3.2.1. Visual inspection and comparison.  

Figure 1 shows the registration performances before 
and after correcting subtle local differences using Demons 
registration. It can be seen that the difference is larger 
when only using local elastic registration (Figure 1(c)). 
After subtle local difference correction using Demons 
registration, the difference decreases.  

Figure 2 shows the segmentation result using the 
proposed method. Visual inspection of the segmentation 
results was performed by comparing “gold standard” and 
automatic segmentation on the hippocampus. It can be 
seen that the automatic segmentation result is acceptable 
and encouraging. 
 

 

 

    (a)               (b)                  (c)                (d)                (e) 

Figure 1. Comparison of the local elastic registration and the proposed method. (a) Internal region of reference 

image (b) Result of local elastic registration (c)Differences between (a) and (b) (d) Result of the proposed 

method (e) Differences between (a) and (d). 
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(a)                                      (b)  

Figure 2. Comparison of “gold standard” and automatic segmentation on the hippocampus. (a) Manual 

segmentation by expert (b) Automatic segmentation using the proposed method. 

 

3.2.2. Quantitative evaluation.  
Validation criteria. To validate the results quantitatively, 
the criteria widely used in atlas-based segmentation 
[1][2][3][17][23], a kappa statistic based similarity index 
(KI) is adopted in this paper. The KI value measures the 
overlap ratio between the segmented structure and the 
ground truth, which is defined as KI=2TP/(2TP+FN+FP). 
The definitions of the parameters are as follows: 

 is the number of true positive; TP G E= ∩ FP G E= ∩  
is the number of false positive and FN G E= ∩  is the 
number of false negative. Where  is the true 

segmentation of a given structure,  is the estimated 

segmentation of the same structure, and 

G

E

A  denotes the 
complement of a set A . 
Validation using synthetic deformation. Since it is hard 
to obtain real MRI images of the human brain with known 
segmentation results of the internal structures, a 
quantitative assessment of the performance of the 
segmentation method requires the use of simulated data 
with known segmentation as the gold standard. The 
synthetic images came from the deformed SPL reference 
image, which was deformed using an analytic harmonic 
deformation approach [33].  

Table 1 shows the segmentation results on simulated 
data. It can be seen that there were great differences in 
cross correlation between the deformed images and the 
original reference image by the synthetic deformation. 
However the mean KI ± standard deviation for ten cases 
was 0.9927 ± 0.0075 which was perfect results regardless 
how low the cross correlation was before registration 
between the reference image and the floating image. It 
showed that high registration quality could lead to high 
segmentation results. 
Validation with expert delineation. Although validation 
with simulated data is a common method for its known 
segmentation, it is not sufficient to validate the approach. 
One drawback is that the deformation is not representative 
of the real inter-subject variability, and the other is that it 
doesn’t consider the noise and artifact in real MRI images. 
So additional testing with real data must also be 
completed to demonstrate the ability of the algorithm to 
work under real-world conditions. For this reason, several 
real MRI data from different subjects were also used to 
test the performance of the approach. Table 2 shows the 
segmentation result using real brain MRI data. For the 
results using ITK-SNAP software, the best overlap ratio 
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was 0.6814 and the worst was 0.4281, and the 
mean±standard deviation was 0.5811±0.0597 for ten cases. 
For the results using the proposed method, the best 
overlap ratio was 0.8636 and the worst was 0.6592, and 
the mean±standard deviation was 0.7749±0.0564. The 
results show that the proposed method is superior to the 
ITK-SNAP in hippocampus segmentation. Since 
ITK-SNAP uses active surface methods implemented in a 

level-set framework, the final segmentation depends to 
some extent on the starting position of the active surface. 
Also because the deforming surface is driven by an 
intensity-based energy minimization function, it is 
difficult to segment the hippocampus due to the lack of 
local intensity information to determine the hippocampal 
boundary. 

Table 1. Segmentation results on simulated data using the proposed method 

Cross Correlation KI value 
Volume 

before after Left Right 

1 0.5700 1.0000 0.9762 0.9756 

2 0.6339 1.0000 0.9922 0.995 

3 0.6583 1.0000 0.9941 0.9928 

4 0.7173 1.0000 0.9867 0.9871 

5 0.7499 1.0000 0.9902 0.9875 

6 0.7573 1.0000 0.9889 0.9921 

7 0.8238 1.0000 0.9965 1.0000 

8 0.9421 1.0000 1.0000 1.0000 

9 0.9555 1.0000 1.0000 1.0000 

10 0.9738 1.0000 1.0000 1.0000 

 

Table 2. Comparison of KI values on real data between ITK-SNAP software and the proposed method 

Method Volume 1 2 3 4 5 6 7 8 9 10 

Left 0.8636 0.7351 0.8075 0.8555 0.8155 0.7543 0.7502 0.7630 0.8299 0.8431
Proposed 

Right 0.7410 0.7722 0.6592 0.8207 0.7359 0.7807 0.6621 0.8026 0.7427 0.7639

Left 0.6814 0.6085 0.6135 0.6236 0.5390 0.5928 0.4546 0.5540 0.6577 0.6270
SNAP 

Right 0.5471 0.5718 0.5594 0.6155 0.5675 0.6015 0.4281 0.5916 0.6036 0.5835

 

4. Discussion 
 

Two validation methods were used in this paper to 
evaluate the segmentation ability of the proposed 
non-rigid registration approach. The first was on the 
simulated data with known segmentation acquired from 
the synthetic deformation, while the second was on real 
data with the expert delineation. Each validation method 
show their advantages and disadvantages. Validation on 

simulated data makes it possible generate known reference 
segmentation, thus the accuracy of the estimated solution 
can be evaluated. However there exist two main 
drawbacks. One is that the deformation is not 
representative of the real intersubject variability and the 
other is that it doesn’t consider the noise and artifact in 
real MRI images. The second validation method is 
obviously in line with the actual situation. The main 
drawback of this validation is that the segmentation map, 
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provided by an expert, cannot be considered as a perfect 
ground truth. So it can be seen that the first validation 
method has true reference segmentation but is not 
representative of the real situation, while the second 
validation method reflects the real situation but has no 
completely true reference segmentation. From the two 
experiment results, a phenomenon was also worthy of 
paying attention to. The segmentation result is very nice 
on simulated data. While the segmentation result on real 
data is relatively not good enough. It is possible that using 
expert segmentation as gold standard may have influence 
on the result, but it should not be the main reason. The 
actual reason should be due to the data differences. As it 
can be seen there are two main differences between the 
two data. One is that the deformation in simulated data 
couldn’t reflect the real shape difference in different 
subjects while the real data could. However both the 
deformation are nonlinear, they should have the same 
characteristic. Thus it should not be the main reason. The 
other difference is that for simulated data, the homologous 
structures in reference image and floating image have the 
similar intensity. But for real data, these are not true 
because of the noise and interference introduced by the 
scanning procedure. This should be a serious problem for 
intensity based registration. The obtained better results 
using the proposed method have provided some evidences. 
Therefore, improving image quality and intensity 
correspondence of homologous structures should be a 
promising strategy for structure segmentation based on 
intensity based non-rigid registration. 
 

5. Conclusion 
 

A combination of local affine transformation and 
Demons free-form transformation is used to segment the 
hippocampus automatically in this paper. The 
segmentation results on both the simulated data and the 
real data are encouraging. It indicates that the proposed 
method could be a solution for segmenting such brain 

internal structures which lack clearly defined intensity 
boundaries from human MRI images. Compared to global 
affine transform and simple histogram match, the selected 
local affine transform with intensity correction 
simultaneously provide a better initial conditions to the 
Demons registration algorithm. Furthermore, the results 
on the simulated data are superior to that on the real data 
due to the nice intensity correspondence between the 
homologous structures. It can be concluded that the image 
gray level of the corresponding structures plays an 
important role in registration based segmentation using 
intensity metric. 
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