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Abstract: In our days, there is a need of designing a more re-
alistic model of a dynamic complex neural system. The inspira-
tion arise from the biological hypothesis about the functionality
of certain subsystems of the nervous system. An idea, that be-
gan in some previous papers, was materialized in the construc-
tion of the so called prion neural system. The present article fo-
cuses on the way the synapses between neurons of a network can
be modeled by designing the binding affinities between them. Of
biological inspiration is also the original idea that governs this
article: in a network of neurons any neuron should not be able
to bind with any other neuron. This is the reason we present a
model of synaptic formation between different kinds of neurons
in a network. A detailed case of study is presented in the end of
this paper.
Keywords: neural networks; hybrid intelligent systems; nature in-
spired computing techniques; evolutionary computing.

I. Introduction

From the biological hypothesis about the functionality of
certain subsystems of the nervous system arise an idea of
designing a more realistic model of a dynamic complex
neural system. As in our days there is a need of designing
such a system, we started to develop the prion neural
system as part of an ambitious project to build models of
complex systems into a bottom up approach. The system
construction started with the molecular level and continued
with the synaptic level, both of them creating the upper level
of a neuron. In the diagram presented in figure 1, there
can be seen all the levels that make up the entire system:
molecular, synaptic, neuron, networks, maps, systems
and the central nervous system level. The prion neural
dynamic system belongs to the hybrid systems category as
we needed to encompass a larger class of systems within the
system structure allowing for more flexibility in modeling a
dynamic biological phenomena that was already introduced
in [1]. Abstracting a computing model from the structure
and the functioning of a living neuron as an evolutionary
multi-functional computing system was not an easy task
and using only one of the directions that we already know
was not enough. The design of such a system drove us to a
very fruitful interdisciplinary interplay. It combines neural
networks, brain calculi or membrane computing under the
framework of DNA computing into this new abstract model.

Figure. 1: The seven levels of a prion neural system: molecular,
synaptic, neuron, networks, maps, systems and the central nervous
system level.

From the computing point of view, the system works as a
parallel machine at the level of its own systems, but also in
a parallel manner at the level of each neuron. Regarding
the neuroarchitecture and functionality, one neuron device
was designed to be directly dependent on its anatomical and
functional metabolism (for more information see again [1]).
Each neuron itself is a system for information processing.
On one hand, it offers objects (playing the role of biological
protein molecules - see [1], [2] for more information) as a
support for computational processes. On the other hand, it
is capable of transforming the input signal into an output
signal following the tradition of neural networks (read [3],
[4], [5], [6] and [7] for specific details; novel neural network
architectures are presented in papers like [8] and [9]). A
network is designed by placing a finite set of neurons in the
nodes of a finite directed graph (see [10]). All the network
units of the assembly are creating a neural-like system
structure modeled as a parallel distributed communication
network of networks of neurons. There are two different
types of interactions: local and global interactions. The
local interactions are defined between neurons, meanwhile
the global ones are defined between networks or neurons
of different networks. All these interactions are translated
as neural communication. The mean by which neural
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communication can be realized is the use of a set of directed
links between neurons in the entire graph. Such a directed
link between two neurons is called a synapse. As one neuron
must also communicate with the surrounding environment,
we will refer to both the directed communication channels
from neuron to the environment and vice-versa using the
same term of a synapse. The evolution or the involution of
the entire system is dependent on the synaptic creation or
”deletion” from one network during the computations.

The idea that governs this article is found in the need of de-
signing the binding affinities between neurons. This need
comes from biology as not any neuron can bind to any other
neuron. Creating connections depends on sufficient quanti-
ties of the corresponding substrates inside the neurons, and
the compatibilities between the type of the transmitters in
the pre-synaptic neurons and receptors types in the posts-
synaptic neurons. The transmitters and receptors are specific
”protein” objects in the pre and post-synaptic neurons respec-
tively, in accordance with the real biological transmitters and
receptors proteins (see [11], [12], [13]). To each synapse cre-
ated between any two neuron devices in a network is assigned
a binding affinity degree that we will refer to as the synapse
weight. For the neurons with no synapse between them, the
value of the binding affinity degree is assigned to zero. It is
also considered to be zero the affinity degrees of the special
”synapses” between neurons and the environment. The same
as in real biological cases, the binding degrees (between neu-
rons and between neurons and the environment) may suf-
fer some changes, inducing this way both modified synaptic
communications and modification into the network structure.
Into a series of future articles, as it requires some special at-
tention, we will discuss in detail both the modification that
can occur into the network structure and the fact that mod-
ified synaptic communications will determine the neuron to
adapt to its inputs modeling this way its behavior (as it was
already described in [14]). The neuron ability to adapt to its
inputs leads to a learning process at the molecular level and
defines the neuron as a feedback control system (first time
presented in [14]).

II. Background for the binding affinities mod-
eling

In [14], we presented a naive model of synaptic formation as
not any neuron can bind to any other neuron ([12], [13]). As
this fact required in detail our attention, we choose to develop
this idea within the pages of this article. In order to construct
the background of the binding affinities modeling between
neurons or between neurons and the environment, we have
to remember a biological reality: the central nervous system
is composed by different nervous nuclei expressing different
voluntary and/or involuntary activities. Each of these nuclei
is an aggregation of neurons expressing all of them the same
functional activities. It is known that between neurons from
the same nervous nuclei there is no directed communication,
the communication being possible between neurons from dif-
ferent nervous nuclei. Still, we can indirectly model the com-
munication between two neurons of the same nervous nuclei,
as in biology there are no arguments that this communication

can not be done ([1]). If we considerN a finite set of neurons
of a network from the entire system structure, we define:
- OCn the set of all classes of organic compounds/organic
complexes for the neuron n
- OCnt ⊂ OCn the set of all neurotransmitters and OCr ⊂
OCn the set of all receptors for the neuron n
- L a finite set of labels over the English alphabet.
We define the labeling function of each organic com-
pound/organic complex as l : OCn → L for any n in
N . As OCnt and OCr are included in OCn we denote
Tr = l(OCnt) ⊆ 2L a set of labels of all neurotransmit-
ters and R = l(OCr) ⊆ 2L a set of labels of all recep-
tors for the neuron n. Deriving from the biology observation
that one neuron produces only one type of neurotransmit-
ters, but it ”may” have more than one type of receptors, we
will consider only one label representing only one class of
neurotransmitters and a number grater or equal to one of la-
bels representing classes of receptors in n. One may say that
|Tr| = 1 and |R| ≥ 1 (finite).
At the molecular level, the neuron device is viewed as a sys-
tem for information processing. It offers objects as a support
for computational processes that transforms the input signal
into an output signal (see [1] for more explanations). These
objects are playing the role of biological protein molecules.
We recall the tree - like architecture of one neuron device n
defined as α(n) = 〈α0,j0 , α1,j1 , . . . , αr,jr 〉, where the finite
number of r compartments are structured as a hierarchical
tree arrangement which not only delimit protected com-
partments as finite spaces, but it also represent supports for
chemical reactions of some chemicals embedded inside ([1]
is recommended for more details). α0,j0 found at the j0 = 0
level of the “tree root” corresponds to the inner finite space
of the neuron (containing all the other compartments), while
α1,j1 , . . . , αr,jr represent the inner hierarchical arrangement
of the neuron such as for j1, . . . , jr natural numbers, not
necessarily disjoint, with jk ≤ r for k ∈ {1, . . . , r}, we
define the proper depth level of the k - th compartment. We
have a maximum of r inner depth levels. For a better un-
derstanding of this architecture, we will consider an example.

Example 1 (A tree - like architecture.) We will consider
the neuron n. α0,0 is found at the j0 = 0 level of the
“tree root” and it contains all the other compartments. The
inner hierarchical arrangement of the neuron architecture
comprises three compartments on the first level: α1,1, α2,1

and α3,1. On the second level of this architecture, there are
three others compartments: α4,2, α5,2 and α6,2. While α4,2

is the inner compartment of α2,1, the others two, α5,2 and
α6,2 there are inside of α3,1. There is a last compartment
found on the third level, inside α4,2. This one is α7,3.
Their structure is represented in figure 2. In this case, the
tree - like architecture of the neuron device n is defined as
α(n) = 〈α0,0, α1,1, α2,1, α3,1, α4,2, α5,2, α6,2, α7,3〉. The
tree-like configuration arrangement of neuron n can be seen
in figure 3.

By the initial configuration we defined the initial neu-
ronal architecture of n along with the chemicals and/or
the chemical complexes found in each of its com-
partment regions. Formally, this was represented by
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Figure. 2: An example of the neuron n having three inner
depth levels and seven compartments. The inner hierarchical
arrangement of the neuron architecture is defined as α(n) =
〈α0,0, α1,1, α2,1, α3,1, α4,2, α5,2, α6,2, α7,3〉.

Figure. 3: The tree-like configuration arrangement of neuron n.

(α0,j0 : o0, α1,j1 : o1, . . . , αr,jr : or).
For each αk,jk with k ∈ {1, ..., r} we also recall the
writing of ok as the string am1

1 am2
2 ...a

mp
p where p ∈ N,

finite. Each ami
i , where ai ∈ OCn, i ∈ {1, ..., p} and

mi ∈ N ∪ {∗}, represents the quantity mi (mi ∈ N) of ai
found in the region αk,jk of the neuron n. If mi = ∗, then
ai is found in an arbitrary finite number of copies in that
region. We will refer to mi as the multiplicity of ai. In the
representation of a configuration a compartment containing
no objects inside is represented by an empty string denoted λ.

Example 2 (An initial configuration.) Considering the
tree-like architecture in the previous example, we can for-
mally represent one possible initial configuration of the form(
α0,0 : a4, α1,1 : a1a

2
2a

3
3, α2,1 : λ, α3,1 : a4

1a
3
5, α4,2 : a∗2,

α5,2 : λ, α6,2 : λ, α7,3 : λ).
In this initial configuration there are no objects in the com-
partments α2,1, α5,2, α6,2 and α7,3. In α0,0 there is one ob-
ject a4. In α1,1 there can be found one copy of a1, two copies
of a2 and three copies of a3. Four copies of a1 and three
copies of a5 are in α3,1 and there is an arbitrary number of
copies of a2 in α4,2.

III. The model

It is considered the set T of discrete times defined as T ={
i · µ|i ∈ N, µ = 1

k , k ∈ N∗fixed
}

. For all ai ∈ OCn
found in the region αk,jk of n and mi its multiplicity, we
define the quantity found into the substrate (in the region
αk,jk of neuron n) of one organic compound/organic com-

plex ai at the computational time t, t ∈ T as a function
Cn:αk,jk

: T ×OCn → N ∪ {∗}, defined by

Cn:αk,jk
(t, ai) =


mi, if mi represents the number of

copies of ai into the substrate
*, if there is an arbitrary finite number

of copies of ai into the substrate .

For expressing the quantity found into the surrounding en-
vironment (of neuron n) of one organic compound/organic
complex ai at the computational time t, t ∈ T , we write the
function Cn:e : T ×OCn → N ∪ {∗}, defined by

Cn:e(t, ai) =



mi, if mi represents the number of
copies of ai into the surrounding
environment

*, if there is an arbitrary finite number
of copies of ai into the surrounding
environment .

Below there are presented the properties of quantities of
organic compounds/organic complexes into the substrate.

1. The quantity of substrate, at the computational time
t, t ∈ T found into αk,jk is

Cn:αk,jk
(t) = Cn:αk,jk

(t, a1)+Cn:αk,jk
(t, a2)+. . .+

+Cn:αk,jk
(t, ap) =

p∑
i=1

Cn:αk,jk
(t, ai) =

p∑
i

mi,

(1)
for all mi ∈ N. If there is i ∈ {1, ..., p} such as
Cn:αk,jk

(t, ai) = ∗, then Cn:αk,jk
(t) = ∗.

2. If at the moment t we have Cn:αk,jk
(t, ai) = mi and

at a later time t
′

a new quantity m
′

i of ai was produced,
supposing that in the discrete time interval [t, t

′
] no ob-

ject ai was used (one may say consumed), then

Cn:αk,jk

(
t
′
, ai

)
= Cn:αk,jk

(t, ai) +m
′

i = mi +m
′

i.

(2)

3. If at the moment t we have Cn:αk,jk
(t, ai) = mi and at

a later time t
′

the quantity m
′

i of ai was consumed, sup-
posing that in the discrete time interval [t, t

′
] no object

ai was produced, then

Cn:αk,jk

(
t
′
, ai

)
= Cn:αk,jk

(t, ai)−m
′

i = mi −m
′

i.

(3)
We make the observation that mi−m

′

i ≥ 0 (mi ≥ m
′

i)
because it can not be consumed more than it exists.

4. If at the moment t we have Cn:αk,jk
(t, ai) = mi and at

a later time t
′

we have Cn:αk,jk

(
t
′
, ai

)
= m

′

i, suppos-

ing that in the discrete time interval [t, t
′
] no object ai

was produced or consumed, then

(a) if mi < m
′

i we say that there is a rise in the quan-
tity of ai;

(b) if mi > m
′

i we say that there is a decrease in the
quantity of ai;
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(c) if mi = m
′

i we say that no changes occurred in
the quantity of ai.

To model the synaptic formation we choose to work on any
pair of neurons within a network structure of the system. We
will design the binding affinities between any two neurons
ni, nj in N , so we redefine
- OCni the set of all classes of organic compounds/organic
complexes for the neuron ni and OCnj

the set of all classes
of organic compounds/organic complexes for the neuron nj
(OCni

∩OCnj
6= ∅)

- OCnti ⊂ OCni the set of all neurotransmitters for ni and
OCrj ⊂ OCnj the set of all receptors for nj . For an easier
way of handling those sets we will refer to the set of neuro-
transmitters for ni by OCnt and the set receptors for nj by
OCr.
- L a finite set of labels over the English alphabet.
For the labeling function of each organic compound/organic
complex l : OCn → L, where n is ether ni or nj , we denote
Tr = l(OCnt) ⊆ 2L the set of labels of all neurotransmitters
for ni andR = l(OCr) ⊆ 2L the set of labels of all receptors
for nj .
The binding affinity depends on a sufficient quantity of sub-
strate and the compatibility between the type of transmitter
and receptor type at time t of synaptic formation (t ∈ T ).
The sufficient quantity of substrate is a fair ratio admitted
r between the number of neurotransmitters released by ni
into the synapse and the number of receptors of the receiver
neuron nj . Without restraining generality, we consider the
sufficient quantity of substrate at time t (t ∈ T ) of synap-
tic formation as a boolean function of the assessment ratio
evaluation. For trans ∈ Tr with m its multiplicity (where
for a ∈ OCnt with l(a) = trans and trans ∈ Tr we have
Cni:α0,0(t, a) = m) and rec ∈ R with n its multiplicity
(where for b ∈ OCr with l(b) = rec and rec ∈ R we have
Cnj :α0,0(t, b) = n), we define qt : Tr ×R→ {0, 1},

qt(trans, rec) =
{

0, if m/n 6= r
1, if m/n = r

.

The function returns an answer regarding the existence of a
sufficient quantity of substrate for the binding to take place,
returning one if there is enough substrate to facilitate the con-
nection and a zero otherwise.
The compatibility function is a subjective function Ct : Tr ×
R→ {0, 1} such as for any trans ∈ Tr and any rec ∈ R,

Ct(trans, rec) =
{

0, if trans and rec are not compatible
1, otherwise .

This function answers the question regarding the compatibil-
ity between the neurotransmitter trans in ni and the receptor
rec in nj , as they might or they might not be compatible. The
returned value is one in the case of compatibility and zero,
otherwise.
The binding affinity function models the connection affinities
between neurons by mapping an affinity degree to each pos-
sible connection. We consider W t ⊂ N the set of all affinity
degrees (at time t),

W t =
{
wtij |wtij ∈ N,∀i, j ∈ {1, 2, . . . , |N |} , ni, nj ∈ N

}
.

For any ni, nj ∈ N , trans ∈ Tr (the transmitters type
of neuron ni), rec ∈ R (the receptors type in neuron nj),
Ct(trans, rec) = x with x ∈ {0, 1} and qt(trans, rec) = y
with y ∈ {0, 1}, we design the binding affinity function as a
function Atf : (N ×N)× (Tr ×R)×Ct(Tr ×R)× qt(Tr ×
R)→W where
Atf ((ni, nj), (trans, rec), x, y) =

=


0, if x = Ct (trans, rec) = 0, ∀y ∈ {0, 1}
0, if (x = Ct (trans, rec) = 1) ∧

(y = qt(trans, rec) = 0)
wtij , if (x = Ct (trans, rec) = 1) ∧

(y = qt (trans, rec) = 1) ∧ (wtij 6= 0).

If the neurotransmitters of one neuron and the receptors of
the other neuron are not compatible, then, no matter their
quantity into the substrate might be, there is no binding
affinity between the two neurons. In case there is a compati-
bility between the neurotransmitters and the receptors of the
neurons, but there is not a sufficient quantity of substrate for
the binding to take place, then again the returned value of the
binding affinity function is zero. It exists a binding affinity
between the two neurons when there is a sufficient quantity
into the substrate and trans and rec are compatible. In this
case, the binding affinity function models the connection
affinities between neurons by mapping to it a non zero
affinity degree.

Theorem 1 (The binding affinity theorem) For Pi ∈ Pbni

a finite set of biochemical processes of neuron ni by which
it produces a multiset of neurotransmitters of type trans
(trans ∈ Tr), at the computational time t (t ∈ T ), and,
in the same time, for Pj ∈ Pbnj

a finite set of biochemical
processes of neuron nj by which it produces a multiset of re-
ceptors of type rec (rec ∈ R), we say that there is a binding
affinity between ni and nj with the binding affinity degree
wtij (wtij 6= 0) if and only if there is wtij ∈ W t∗ such as
Atf ((ni, nj), (trans, rec), 1, 1) = wtij .
Proof: Immediately from the definition of the binding
affinity function.

In other words the theorem says that if between two neurons
there is a binding affinity and the binding affinity degree
being a certain non zero value, then the returned value of
the binding affinity function is precisely that non zero value.
Vice-versa, if there is a non zero value representing the
returned value of the binding affinity function, then between
the two neurons there is a binding affinity with its degree
being precisely this non zero value.

Definition 1 For any ni, nj ∈ N , trans ∈ Tr (the transmit-
ters type of neuron ni) and rec ∈ R (the receptors type in
neuron nj) at time t, if there is a binding affinity between ni
and nj with the binding degree wtij (wtij ∈W t) and wtij 6= 0
then we say that there is a connection formed from ni to
nj . This connection is called the synapse between the two
neurons and it is denoted by synij . Each synapse has a
synapse weight wtij = w,w ∈ N∗. If instead of ni we have
e then the synapse synej represents the directed link from
the environment to the neuron nj and if instead of nj we
have e then the synapse synie represents the directed link
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from the neuron ni to the environment. The synapses weighs
are considered to be zero (wtej = wtie = 0).

Definition 2 We say that there is no connection from neuron
ni to neuron nj if and only if wtij = 0.

As the molecular level of a prion neural system was de-
scribed in [1], along with the biological inspired phenomena
that stands up as the starting idea of the system model, using
the results in Theorem 1 we will redefine in Corollary 1 the
prion neural-like network structure.

Corollary 1 A prion neural-like network structure is
a parallel distributed communication network of neu-
rons placed in the nodes of a finite directed graph
Ns = (N,Syn) where N is a finite set of neurons
and Syn defines a finite set of directed links called
synapses, Syn ⊆ N × N a binary relation, such as
Syn = {synij = (ni, nj) |ni, nj ∈ N, i 6= j, with i, j ∈
{1, . . . , card (N)} , Atf ((ni, nj), (trans, rec), 1, 1) = wtij ,

wtij ∈W t∗
}
∪ {(n, e), (e, n)|n ∈ N}. If instead of ni

we have e then the synapse (e, nj) represents the di-
rected link from the environment to the neuron nj and
Atf ((e, nj), (trans, rec), 1, 1) = 0, respectively, if instead
of nj we have e then the synapse (ni, e) represents the
directed link from the neuron ni to the environment and
Atf ((ni, e), (trans, rec), 1, 1) = 0.
Proof: Immediately from the construction of the neural-like
network structure (for more details it is recommended to be
seen [1]) and the binding affinity theorem.

Underlying a conclusion, a synapse weight equals to zero
if there is no connection from one neuron to the another or
in the case of a direct link to or from the environment. In
other words, the synapse weight wtij equals to zero in any
of the fallowing situations: if there is no connection from
neuron ni to the neuron nj , or if instead of nj we have e
then wtie = 0 (respectively, if instead of ni we have e then
wtej = 0).

Theorem 2 (One way synaptic direction theorem) For
Pi ∈ Pbni

a finite set of biochemical processes of neuron
ni by which it produces a multiset of neurotransmitters of
type trans and receptors of type rec′, at the computational
time t (t ∈ T ), and in the same time for Pj ∈ Pbnj

a
finite set of biochemical processes of neuron nj by which
it produces a multiset of receptors of type rec and neu-
rotransmitters of type trans′, if there is wtij in W t with
wtij 6= 0 such as Atf ((ni, nj), (trans, rec), 1, 1) = wtij ,
then there is no wtji in W t with wtji 6= 0 such as
Atf ((nj , ni), (trans′, rec′), 1, 1) = wtji. (If there is wtji in
W t such as Atf ((nj , ni), (trans′, rec′), 1, 1) = wtji, then
wtji = 0.)
Proof: In [1] we showed that there is a restriction over the
system architecture coming from a biological principle from
the functionality point of view, consisting in the existence
of at least one spare circuit of neurons in the network. This
means that if there is a direct connection in one direction
between any two neurons in the network then there can not
exist the reverse direct connection between the two neurons.

In our case, if Atf ((ni, nj), (trans, rec), 1, 1) = wtij with
wtij 6= 0 for any wtij ∈ W t, then there can not be the reverse
connection in the same time from neuron nj to ni. From the
second definition above this means that wtji = 0 leading to
the conclusion that there is no wtji ∈ W t, wtij 6= 0 such as
Atf ((nj , ni), (trans′, rec′), 1, 1) = wtji.

Corollary 2 For any two neurons ni and nj in N , in the set
of synapses Syn − {(n, e), (e, n)|n ∈ N} of a prion neural
system if it exists the synapse synij from neuron ni to neuron
nj , then the synapse synji from neuron nj to ni can not exist.
Proof: Let us consider two neurons ni and nj in N such as
it exists the synapse synij ∈ Syn. If this synapse exists,
then it also exists a proper synapse weight wtij ∈ W t∗.
From Corollary 1 and the Binding affinity theorem we
know that for the type trans of neurotransmitters of
neuron ni and the type rec of receptors of neuron nj we
have Atf ((ni, nj), (trans, rec), 1, 1) = wtij , w

t
ij ∈ W t∗.

According to the One way synaptic direction theorem
it does not exist a synaptic weight wtji ∈ W t∗ such as
Atf ((nj , ni), (trans′, rec′), 1, 1) = wtji, for any type
trans′ of neurotransmitters of neuron nj and any type
rec′ of receptors of neuron ni (or we may say that
Atf ((nj , ni), (trans′, rec′), 1, 1) = 0). Definition 2 says
that in this case (wtji = 0) there is no connection from
neuron nj to neuron ni.

Corollary 3 For any two neurons ni and nj in N , if there
is no connection both from ni to nj and from nj to ni at the
same computational time t (t ∈ T ), then there is no synapse
in Syn between neurons ni and nj .
Proof: It is considered Pi ∈ Pbni

a finite set of biochemi-
cal processes of neuron ni by which it produces a multiset of
neurotransmitters of type trans and receptors of type rec′,
at the computational time t (t ∈ T ), and, in the same time,
a finite set Pj ∈ Pbnj

of biochemical processes of neuron
nj by which it produces a multiset of receptors of type rec
and neurotransmitters of type trans′. As there is no connec-
tion from ni to nj and there is no connection from nj to ni
then, according to Definition 2, it exists the synapses weights
wtij , w

t
ji ∈ W t such as wtij = wtji = 0. But the synapse

weight of a synapse between two neurons, in order for the
synapse to exists (fallowing the definition of a synapse in
Corollary 1), must have a nonzero value. In our case, this
unfulfilled condition leads to the conclusion that there is no
synapse in Syn between the two neurons ni and nj .

A. Case of study

The present case of study represents an extension to the short
case of study introduced in [15]. The time t(t ∈ T ) consid-
ered is the moment of synaptic formation between neurons.
Coming from the system capacity to evolve we make the ob-
servation that in time if certain conditions will be fulfilled,
new synapses may be formed (or in the case of same min-
imum conditions not being fulfilled, some synapses can be
lost). The major premises of this case of study is the exis-
tence of only one transmitter type and one receptor type for
each neuron (although far distant from the biological reality).
For the set N = {n1, n2, n3} of neurons, we define

• for neuron n1: OCnt1 =
{
a|Cn1:α0,0(t, a) = m1

}
⊂
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OCn1 the set of neurotransmitters type and OCr1 ={
x|Cn1:α0,0(t, x) = p1

}
⊂ OCn1 the set of receivers

type

• for neuron n2: OCnt2 =
{
b|Cn2:α0,0(t, b) = m2

}
⊂

OCn2 the set of neurotransmitters type and OCr2 ={
y|Cn2:α0,0(t, y) = p2

}
⊂ OCn2 the set of receivers

type

• for neuron n3: OCnt3 =
{
c|Cn3:α0,0(t, c) = m3

}
⊂

OCn3 the set of neurotransmitters type and OCr3 ={
z|Cn3:α0,0(t, z) = p3

}
⊂ OCn3 the set of receivers

type
with m1,m2,m3, p1, p2, p3 ∈ N.

We will analyze the possibilities for synaptic formation start-
ing from the fallowing assumptions. There are considered
the mappings li : OCni → L with Tri = li(OCnti)
and Ri = li(OCri

) for all i ∈ {1, 2, 3} such as the
elements transi are labels of neurotransmitters found in
Tri

and the elements reci are labels of receptors found in
Ri. There are also considered two ratios admitted, r1 and
r2, such as qt(trans2, rec1) = 1 (so m2/p1 = r1) and
qt(trans3, rec1) = 1 (som3/p1 = r2). Four compatibilities
are known: Ct(trans2, rec1) = 1, Ct(trans3, rec1) = 1,
Ct(trans3, rec2) = 0 and Ct(trans2, rec3) = 0. Directly
from those assumptions, we obtain the fallowing results:

•

Atf ((n2, n3), (trans2, rec3), 0, y) = 0 (4)

and

Atf ((n3, n2), (trans3, rec2), 0, y) = 0, (5)

for all y ∈ {0, 1}, leading to the impossibility of any ex-
istence of any bound between neurons n2 and n3, nether
at time t nor at any further moment in time as long as
they produce the same pairs of neurotransmitters and re-
ceivers as those produced at time t. This comes from the
incompatibility of the two neurons in creating a synapse
between them (see Corollary 3). We say that there is no
synij and no synji for i, j ∈ {2, 3} , i 6= j.

• there is w21 ∈ N such as

Atf ((n2, n1), (trans2, rec1), 1, 1) = w21, w21 6= 0.
(6)

We say that there is a binding affinity between neurons
n2 and n1 with the degree w21.

• there is w31 ∈ N such as

Atf ((n3, n1), (trans3, rec1), 1, 1) = w31, w31 6= 0.
(7)

We say that there is a binding affinity between neurons
n3 and n1 with the degree w31.

In this moment our study can lead into two different
directions of interpretation considering the fact only few
parameters are known. For example, we also know the
incompatibility of n2 and n3 neurons in creating a synapse
between them and the convenient binding affinities between
n2 with n1 and n3 with n1. But what about the other
possibilities in creating (or not) synapses (for example from

n1 to n2)?

(A) If we consider the assumptions being mandatory in the
sense those premises being the favored ones in creating
synapses, then there are formed the synapses syn21 and
syn31 between neurons n2 with n1 and n3 with n1, while,
there is no synij and no synji for i, j ∈ {2, 3} , i 6= j. More
of that, as long as the neurons produce the same pairs of
neurotransmitters and receivers as those produced at time
t, no matter if trans1 with rec2 or rec3 have or have not a
sufficient quantity of substrate or are or are not compatible,
the synapses syn12 and syn13 can not exist. So, the final
set of synapses is Syn = {syn21, syn31} and the neural
network structure Ns = (N,Syn) is formed.

(B) If we consider the assumptions not being mandatory in
the sense of the input premises representing only the known
conditions (one may say the implicit assumptions), we will
discuss below all the possibilities of synaptic formation for
this case of study:

1. For Ct(trans1, rec2) = 0, we have

Atf ((n1, n2), (trans1, rec2), 0, y) = 0.

As the binding from n1 to n2 is not possible, the synapse
syn21 can be formed.

(a) if Ct(trans1, rec3) = 0, then

Atf ((n1, n3), (trans1, rec3), 0, y) = 0.

As the binding from n1 to n3 is not possi-
ble, the synapse syn31 can be formed accord-
ing to (7). The final set of synapses is Syn =
{syn21, syn31} and the formed neural network
structure is the same one as the one in (A).

(b) if Ct(trans1, rec3) = 1, but
qt(trans1, rec3) = 0, then

Atf ((n1, n3), (trans1, rec3), 1, 0) = 0.

As the binding from n1 to n3 is not possible, the
synapse syn31 can be formed according to (7).
The final result is the same one as in the case (1a).

(c) if Ct(trans1, rec3) = 1 and
qt(trans1, rec3) = 1, then

Atf ((n1, n3), (trans1, rec3), 1, 1) = w13,

with w13 6= 0. In the same time there is w31 6= 0
such as

Atf ((n3, n1), (trans3, rec1), 1, 1) = w31.

We are facing with two possibilities (Theorem 2):
either will be formed the synapse syn31 and not
syn13, the final result being the same one as in
the case (1a), either will be formed the synapse
syn13 and not syn31 and the set of synapses being
Syn = {syn21, syn13}.
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2. For Ct(trans1, rec2) = 1, but qt(trans1, rec2) = 0
we have the same returned value of the binding affinity
function as in case (1):

Atf ((n1, n2), (trans1, rec2), 1, 0) = 0.

A binding from n1 to n2 is not possible. In this case the
synapse syn21 can be formed. All the further discus-
sions in this case will be the same ones as those from
(1a,b and c).

3. For Ct(trans1, rec2) = 1 and qt(trans1, rec2) = 1,
we have

Atf ((n1, n2), (trans1, rec2), 1, 1) = w12,

with w12 6= 0. In the same time there is w21 6= 0 such
as

Atf ((n2, n1), (trans2, rec1), 1, 1) = w21.

We are facing again with two possibilities (Theorem 2):

(a) if it will be formed the synapse syn21 and not
syn12, then we are finding the same situations as
those from (1a,b and c)

(b) if it will be formed the synapse syn12 and not
syn21, then the cases remaining to be discussed
below are between neurons n1 and n3 as fallows:

i. Ct(trans1, rec3) = 0, we have

Atf ((n1, n3), (trans1, rec3), 0, y) = 0.

As the binding from n1 to n3 is not possible,
the synapse syn31 can be formed. The final
set of synapses is Syn = {syn12, syn31}

ii. Ct(trans1, rec3) = 1, but
qt(trans1, rec3) = 0, we have

Atf ((n1, n3), (trans1, rec3), 1, 0) = 0.

Again, a binding from n1 to n3 is not pos-
sible and the set of synapses that can be
formed is the same one as in (b.1.) (Syn =
{syn12, syn31}).

iii. Ct(trans1, rec3) = 1 and
qt(trans1, rec3) = 1, we have

Atf ((n1, n3), (trans1, rec3), 1, 1) = w13,

with w13 6= 0. In the same time there is
w31 6= 0 such as

Atf ((n3, n1), (trans3, rec1), 1, 1) = w31.

We are again confronting with two possi-
bilities (Theorem 2): either will be formed
the synapse syn31 and not syn13, the final
synaptic formation leading to the same set of
synapses as in (b.1.), either a new synapse
will be formed, this one being syn13 and
not syn31. The final network configuration
will be Ns = (N,Syn), where Syn =
{syn12, syn13}.

IV. Conclusion

In the present paper we modeled synaptic creation between
neurons by designing the binding affinities between them.
There are some obvious conclusions arise from the model.
First of all, concerning the existence of a synapse between
two neurons, we have to note its one-way directionality. Of
course, in the case of synapses between neurons and the en-
vironment this is not necessarily obligatory. The second con-
clusion refers to a synapse between any two neurons in the
network to not exist. In this case, there should be no con-
nections in any sense (from one neuron to another, nor vice-
versa). The last conclusion came from the fact that changes,
in time, of the the binding degrees (between neurons and be-
tween neurons and the environment) will induce modified
synaptic communications and modification into the network
structure. Our work will continue into a series of future ar-
ticles by describing the way modified synaptic communica-
tions will determine the neuron to adapt to its inputs by mod-
eling, this way, its behavior. Due to the fact that the entire
complex system structure and functionality is still in its early
stages of a theoretical model, experiments to test the pro-
posed technique will be done. The purpose of this paper was
to create a stronger background than the one already intro-
duced in [14]. This background represents the platform on
which one neuron device develops as a feedback control sys-
tem by its ability to adapt to its own inputs leading, this way,
to a learning process at the molecular level. Precisely the im-
plementation at a molecular level of a neuron model viewed
as a feedback control system is expected to have major im-
pact in the future of biological, medical and information pro-
cessing areas.
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