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Abstract: Skull stripping is a major phase in MRI brain 

imaging applications and it refers to the removal of the brain’s 

non-cerebral tissues. The main problem in skull-stripping is the 

segmentation of the non-cerebral and the intracranial tissues 

due to their homogeneity intensities. Numerous techniques were 

applied in the studies of skull stripping, most common are region 

growing and mathematical morphology. This paper investigated 

the strength and weaknesses of these two methods on three types 

of MRI brain images. Unlike previous researches which 

normally tested on one type of MRI images only, this paper 

experimented on ninety samples of T1-weighted, T2-weighted 

and FLAIR MRI brain images. Qualitative evaluations showed 

that skull stripping using mathematical morphology 

outperformed region growing at an acceptance rate of 95.5%, 

whereas quantitative evaluation using Area Overlap, False 

Positive Rate and False Negative Rate produced of 96.2%, 2.2% 

and 1.6% respectively. 
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I. Introduction 

Brain imaging has been widely used in many medical 

applications that are helpful in the detection of brain 

abnormalities such as brain tumour, stroke, paralysis and 

breathing difficulties. Over the decades, skull stripping has 

been one of the major pre-processing phases in brain imaging 

applications [1] and for further analysis of Magnetic 

Resonance Imaging (MRI) brain images [2]. Previous studies 

involving MRI brain images and skull stripping used in 

clinical applications are brain mapping [3], brain tumour 

volume analysis [4], tissue classification [5], epilepsy analysis 

[6] - [8] and brain tumour segmentation [9] [27]. MRI brain 

images are utilized in this paper as the soft tissues are easily 

manipulated and offers higher-definition images compared to 

the others [10] [11], thus is helpful in diagnosing some brain 

irregularities [2]. 

Skull stripping is a major phase in brain imaging 

applications [1] and it refers to the removal of non-cerebral 

tissues such as skull, scalp, vein or meninges [1]. Numerous 

techniques have been applied in skull stripping studies, most 

common are region growing techniques [14] [15] [2] and 

mathematical morphology [5] [16] [17] [18] [19] [24] [25]. 

Region growing works by appending neighbouring pixels 

of starting seed pixel to form a region based on predefined 

criteria [15] [20]. The region grows by appending to each seed 

pixel those neighbouring pixels that have the similar 

properties to the seed point such as specific range of gray level 

values or colour. The disadvantage of this algorithm is that 

user has to select the seed regions [14] and threshold values 

[2]. Therefore, Park et al. [2] addressed this problem by 

introducing a 2D region growing algorithm that automatically 

selects seed regions that correspond to the brain and non-brain 

regions. Thus, it is robust against low contrast, noise, intensity 

inhomogeneities and effectively addresses the connection 

issue of the brain regions. 

Gonzales & Woods [20] defined mathematical morphology 

as a tool for extracting image components useful in the 

representation and description of region shape such as 

boundaries, skeletons and convex hull. Previous studies of 

brain segmentation and analysis have employed mathematical 

morphology [5] [16] [17] [18] [19]. These studies commonly 

used morphological opening to separate the brain tissues from 

the surrounding tissues as well as morphological dilation and 

closing are required for the segmentation of the brain tissues 

without holes. As morphological operations requires binary 

form images, it provides a simple and efficient way for 

integrating distance, neighbourhood information in 

segmentation [16] as well as offers a unified and powerful 

approach to numerous image processing problems [20]. 

However, morphology requires a prior binarization of the 

image into object and background regions [16].  

Thresholding creates binary images from gray-level ones 

by turning all pixels below of the threshold value to zero and 

all pixels above the threshold value to one [21]. The selection 
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of an adequate threshold of gray-level for extracting objects 

from their background is important [22] [26] and thresholding 

algorithm is an intuitive properties and simplicity of 

implementation of the application of image segmentation [20]. 

However, it is difficult to find the robust threshold values 

which produce a good output for some of the images [24]. The 

mathematical morphology segmentation using double 

thresholding produced more robust and accurate 

skull-stripping compared to Otsu’s thresholding as proposed 

in [24]. Therefore, this paper proposed utilizing double 

threshold values during skull stripping using mathematical 

morphology to address the drawback of choosing the incorrect 

threshold values. The proposed thresholding technique is then 

compared to the popular Otsu’s thresholding in performing 

skull stripping as well as region growing technique by using 

the double and Otsu threshold values. 

II. Methodology 

As mentioned previously, this paper investigated the 

performance of two most popular methods of skull stripping 

that is mathematical morphology and region growing. The 

first part of the experiment addressed the issue of identifying 

the threshold value used in performing skull stripping using 

mathematical morphology. Figure 1 shows the process flow 

of the proposed algorithms. 

 

 
Figure 1. Process flow of the proposed mathematical 

morphology method 

 

The second part of the experiment compared the 

performance of region growing against mathematical 

morphology in performing skull stripping. The same set of 

data is used and both qualitative and quantitative 

measurements are conducted to compare the performance of 

both methods. Region growing’s process flow is illustrated in 

Figure 2. In the next sections of methodology, each phase of 

the process flow is further explained. 

 

 
Figure 2. Process flow of the proposed region growing 

method 

A. Data Collections 

Two-dimensional MRI data sets are collected from the 

Hospital Sungai Buloh in Selangor.  A total of 90 MRI brain 

images for all image sequences are utilized as the test images. 

The data sets were obtained from adults ranging from 18 to 60 

years old. Details of image sequences used in the experiments 

are: 

• T1-Weighted of axial orientation (30 images) 

• T2-Weighted of axial orientation (30 images) 

• Fluid Attenuated Inversion Recovery (FLAIR) of axial 

orientation (30 images) 

B. Thresholding 

Two thresholding methods are experimented for skull 

stripping using mathematical morphology that is double 

thresholding and Otsu’s method. The purpose of this 

experiment is to identify the robust threshold values to 

remove the non-cerebral tissue from MRI brain images. 

Figure 3 illustrates the non-cerebral tissues (skull, 

cerebrospinal fluid, meninges) to be extracted. 

 

Figure 3. Anatomical of cerebral and non-cerebral tissues 

1) Double thresholding 

The selection of the double threshold values means choosing 

on the dual threshold values which defines the intensities of 

the non-cerebral tissues (i.e. skull, cerebrospinal fluid, 

meninges) of all 90 MRI images. Table 1 tabulated the 

results. 

 

Non-cerebral 

Tissues 

Meninges 

Skull 

Cerebrospinal 

Fluid (CSF) 

Cerebral Tissues 

Filling in holes inside the brain region 

Result of region 

growing segmentation 

Input image 

Automated calculation of seed point 

The region grows by comparing the 

seed point and neighbours which is in 

the range of threshold values 

Filling in holes inside the brain 

region 

Result of morphological 

segmentation 

Input image 

Applying morphological 

segmentation 

Otsu thresholding Double thresholding 

Binary image 
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Table 1. Average intensities of cerebral and non-cerebral 

tissues 

Non-cerebral Tissue Average Intensities 

Skull 0.70-1.00 

CSF 0.00-0.20 

Meninges 0.15-0.50 

Cerebral Tissues 0.2-1.0 

 

As can be seen from Table 1, the average intensities of the 

non-cerebral tissues are within the range of 0 to 0.5 and 0.7 to 

1.0. For instance in Figure 4, the lower intensity referred to 

20% of the cumulative histogram constituting mostly the 

background and CSF. Whereas the upper intensity which lies 

above 0.7 of intensity histogram is the skull since they 

generally appeared brighter than other non-cerebral tissue. 

Thus, the binary image, g(x, y) of the original image, f(x, y) 

using the double threshold values can be defined as follows. 
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Figure 4. Histogram-based double threshold values 

estimation 

2) Otsu’s thresholding 

The popular Otsu’s [22] algorithm is very simple, utilizing 

only the zeroth- and the first-order cumulative moments of the 

gray-level histogram. 
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An optimal threshold is determined by discriminant 

criterion which is to maximize the separability of the resultant 

classes in gray levels. This thresholding method is based on 

selecting the lowest point between two classes. Therefore, the 

optimal threshold 
*k  is defined as: 
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C. Mathematical Morphology Segmentation 

Next, mathematical morphology operations (i.e. erosion, 

dilation and region filling) are applied to the binary image to 

remove the non-cerebral tissue. The concept is to convolve the 

binary image with a structuring element to produce the 

skull-stripped image. Since the brain is an oval-shape image, a 

disk-shape structuring element as shown in Figure 5 is chosen 

in the convolution process. 

 

 
Figure 5. Structuring element of morphological erosion and 

dilation 

 

Erosion is used to remove the pixels on the MRI brain 

image’s boundaries, thus removing the non-brain regions such 

as skull, cerebrospinal fluid and meninges. As defined in [20], 

erosion of binary image, A using structuring element, B can be 

denoted as: 

�� � � �����	
 � �� 

This equation indicates that the erosion of A by B is the set of 

all points z such that B, translated by z, is contained in A. 

In this proposed algorithm, the morphological dilation is 

applied in order to enhance and connect all the intracranial 

tissues within the image. Mathematical morphology dilation 

[20] of binary image, A using the structuring element, B in 

Figure 5 but with a different size can be denoted as: 

{ }φ≠∩=⊕ ABzBA
z
)ˆ(|  

where φ  is the empty set. This equation is based on obtaining 

the reflection of B about its origin and shifting this reflection 

by z. The dilation of A by B then is the set of all displacements, 

z such that B̂  and A overlap by at least one element. 

D. Region Growing 

Region growing is a procedure that group pixels into larger 

regions based on predefined criteria and it started growing 

with the selected seed point. The segmentation by region 

growing worked by appending neighbouring pixels of a seed 

point that was automatically selected based on the centre point 

of the maximum region area of the axial MRI image. 

1) Seed point selection 

The seed point is selected by choosing the centre point of the 

maximum region area within the brain image. For example, 

Figure 6 below shows the blue point selected as the seed point 

of the image. 

 

 
Figure 6. Seed point selection 

 

2) Growing predicates and stopping criteria 

The region grew by comparing all 8-neighbouring pixels of 

the original image with the seed point which is within the 

range of defined threshold values. The region stopped if the 

neighbouring pixels are outside the range of the threshold 
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values. The threshold values applied using the double 

threshold defined in the double thresholding section. 

E. Binary Morphological Enhancement 

The final step of both mathematical morphology and region 

growing is an optional process to enhance the appearance of 

the skull-stripped brain image as shown in Figure 8 Region 

filling is used to fill in holes inside the brain region. Given a 

brain region, A and an initial point p of the holes region, 

region filling is done using the following equation: 

K,3,2,1;)(
1

=∩⊕= − kABXX C

kk
where pX =

0
 and B is a 

structuring element as shown in Figure 7. This process 

terminates at iteration step k if 
1−=

kk
XX . 

 

0 1 0 

1 1 1 

0 1 0 

Figure 7. Structuring element of morphological region filling 

 

 
Figure 8. The process of before and after region filling 

III. Results and Evaluation 

Both region growing and mathematical morphological 

methods of skull-stripping ware evaluated on 90 MRI brain 

images of T1-weighted, T2-weighted and FLAIR of axial 

orientation. The experimented results of the skull-stripped 

images are evaluated using qualitative visual inspection by 

expert radiologists, and quantitative evaluation using Area 

Overlap (AO) [23], False Positive Rate (FPR) [2] and False 

Negative Rate (FNR) [2]. 

A. Experiment 1 

The first part of the experiment was to compare double 

thresholding against Otsu’s thresholding in determining a 

more robust threshold values. The visual inspection results of 

skull-stripping using mathematical morphology on 

T1-weighted, T2-weighted and FLAIR images are tabulated 

as shown in Table 2. 

 

Table 2. Visual inspection for T1-Weighted, T2-Weighted 

and FLAIR images using Mathematical Morphology 

Data Set 
Accept 

(%) 

Reject 

(%) 

T1-Weighted 
Double 93.3333 6.6667 

Otsu 76.6667 23.3333 

T2-Weighted 
Double 96.6667 3.3333 

Otsu 93.3333 6.6667 

FLAIR 
Double 96.6667 3.3333 

Otsu 93.3333 6.6667 

 

Table 2 shows that skull stripping using double 

thresholding produced higher acceptance rate compared to 

Otsu’s thresholding for all three types of image sequences. 

For example, the acceptance rate for skull-stripped 

T1-weighted images using double thresholding is 16% higher 

than using Otsu’s thresholding. 

The quantitative performance evaluation using AO, FPR 

and FNR of T1-weighted, T2-weighted and FLAIR images 

are calculated as shown in Table 3, Table 4 and Table 5 

respectively. Prior to evaluations, ground truth data of all 90 

skull-stripped images are created by radiologists as 

benchmark for quantitative evaluations. AO is used to 

compute the area of intracranial tissues that the proposed 

algorithms could capture and this method can be considered 

as a good representation for segmenting the area of 

intracranial tissues accurately [23]. AO is computed as 

follows: 
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FPR method is used to quantify the over-segmentation of 

non-cerebral tissues while FNR method measured the 

under-segmentation of intracranial tissues within the images. 

The evaluations are computed as follows:
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where 1
S

 represents the area of the skull-stripped images 

obtained by the proposed algorithms, 
C

S
1 is the complement 

of 1
S

, 2
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 represents the area of the ground truth data and 
C

S
2 is the complement of 
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Table 3. Mean percentage of Area Overlap T1-Weighted, 

T2-Weighted and FLAIR images 

Data Set 

AO (%) 

Double 

Threshold 

Otsu 

Threshold 

T1-Weighted 95.0879 92.9424 

T2-Weighted 97.0903 97.0828 

FLAIR 96.4646 96.2163 

Average 96.2143 95.4138 

 

As shown in the Table 3, average overlap area is higher 

using double thresholding compared to Otsu’s. This indicated 

that more intracranial tissues are extracted. Thus, the double 

thresholding are robust against Otsu’s for all tested images. 

 

Table 4. Mean percentage of False Positive Rate 

T1-Weighted, T2-Weighted and FLAIR images 

Data Set 

FPR (%) 

Double 

Threshold 

Otsu 

Threshold 

T1-Weighted 2.0626 2.2239 

T2-Weighted 2.2775 2.1702 

FLAIR 2.1424 1.6142 

Average 2.1608 2.0028 
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Table 4 tabulated the false positive rate and results showed 

that for T1-weighted images, double thresholding performed 

better than Otsu’s. However, for T2-weighted and FLAIR 

images, FPR is slightly higher when using double 

thresholding. This indicates that oversegmentation occurred 

more when using double thresholding on both T2-weighted 

and FLAIR images. The main reason is due to the 

homogeneous intensities of meninges with intracranial tissues 

as demonstrated in Figure 9. 

 

 
Figure 9. Non-cerebral tissues of meninges 

 

For false negative rate as shown in Table 5, skull-stripping 

using double thresholding again outperformed Otsu’s 

thresholding. As an example, Otsu’s thresholding FNR for 

T1-weighted images is much higher compared to double 

thresholding. This indicated that Otsu’s thresholding tends to 

undersegment the intracranial tissue. The same 

undersegmentation occurred for T2-weighted and FLAIR 

images. Since the AO rate of double thresholding produced 

more than 95% accuracy as well as its FPR and FNR low error 

rates of less than 10%, the double thresholding is more robust 

for all the image sequences. 

Figure 10 demonstrated examples of skull-stripped images 

of mathematical morphology for T1-weighted, T2-weighted 

and FLAIR image sequences. 

 

Table 5. Mean percentage of False Negative Rate 

T1-Weighted, T2-Weighted and FLAIR images 

Data Set 

FNR (%) 

Double 

Threshold 

Otsu 

Threshold 

T1-Weighted 2.8495 4.8337 

T2-Weighted 0.6322 0.7470 

FLAIR 1.3930 2.1695 

Average 1.6249 2.5834 

 

As double thresholding proved to outperform Otsu’s 

thresholding, the results of skull stripping using double 

thresholding is used to be evaluated against skull stripping 

using region growing which is presented in the next section. 

B. Experiment 2 

The purpose of the second experiment is to evaluate the 

performances of skull stripping using region growing and 

mathematical morphology. The qualitative visual inspection 

results of skull-stripping using region growing and 

mathematical morphology on T1-weighted, T2-weighted and 

FLAIR images are tabulated in Table 6. As can be seen, for 

each type of MRI image, mathematical morphology clearly 

surpassed region growing at an average of 95.5% acceptance 

rate when evaluated by experts. 

 

Table 6. Qualitative evaluation using Region Growing and 

Mathematical Morphology 

Data Set 

Region Growing 
Mathematical 

Morphology  

Accept 

(%) 

Reject 

(%) 

Accept 

(%) 

Reject 

(%) 

T1-Weighted 36.6667 63.3333 93.3333 6.6667 

T2-Weighted 86.6667 13.3333 96.6667 3.3333 

FLAIR 73.3333 26.6667 96.6667 3.3333 

Average 65.5556 34.4444 95.5556 4.4444 

 

The results of quantitative evaluation using area overlap 

for all T1-weighted, T2-weighted and FLAIR MRI brain 

images tabulated as in Table 7. Table 7 shows that the results 

of skull stripping using mathematical morphology produced 

higher percentage for all three types of images compared to 

region growing. For instance, the acceptance rate for AO of 

the skull-stripped T1-weighted images produced 95% which 

is higher acceptance rate compared to region growing which 

produced 79% of AO. This indicated that skull stripping using 

mathematical morphology produced better results for all three 

types of images. 

 

Table 7. Mean percentage of Area Overlap T1-Weighted, 

T2-Weighted and FLAIR images using Region Growing and 

Mathematical Morphology 

Data Set 

AO (%) 

Region 

Growing 

Mathematical 

Morphology 

T1-Weighted 78.8764 95.0879 

T2-Weighted 93.4437 97.0903 

FLAIR 91.4494 96.4646 

Average 87.9232 96.2143 

 

Table 8. Mean percentage of False Positive Rate 

T1-Weighted, T2-Weighted and FLAIR images using Region 

Growing and Mathematical Morphology 

Data Set 

FPR (%) 

Region 

Growing 

Mathematical 

Morphology 

T1-Weighted 16.7044 2.0626 

T2-Weighted 4.1151 2.2775 

FLAIR 5.6749 2.1424 

Average 8.8315 2.1608 

 

Table 8 demonstrates the results of quantitative evaluation 

using false negative rate for all T1-weighted, T2-weighted and 

FLAIR MRI brain images. The results of mathematical 

morphology presented low percentage compared to high 

percentage of FPR to region growing. This indicated that less 

oversegmentation occurred for all three types of images using 

mathematical morphology. Therefore, the mathematical 

morphology performed better for all three types of images. 

 

 

 

Meninges 
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Table 9. Mean percentage of False Negative Rate 

T1-Weighted, T2-Weighted and FLAIR images using Region 

Growing and Mathematical Morphology 

Data Set 

FNR (%) 

Region 

Growing 

Mathematical 

Morphology 

T1-Weighted 4.4191 2.8495 

T2-Weighted 2.4412 0.6322 

FLAIR 2.8757 1.3930 

Average 3.2453 1.6249 

 

Table 9 tabulated the skull-stripping quantitative 

evaluation using false negative rate. The results showed that 

mathematical morphology outperformed region growing. The 

error for mathematical morphology is lower compared to 

region growing for all three types of images. This lower 

percentage error denoted that mathematical morphology 

produced less undersegmentation region of skull-stripped 

images. Thus, it proved that mathematical morphology 

performed better than region growing as AO rate produced 

higher percentage, as well as FPR and FNR also have lower 

error rate for all image sequences. 

Figure 10 and Figure 11 illustrated the samples of 

skull-stripped images for all image sequences using 

mathematical morphology and region growing. 

IV. Conclusion 

The proposed algorithm of mathematical morphology 

segmentation of MRI brain images has been utilized and mean 

percentage of AO, FPR and FNR for each image sequences of 

all T1-weighted, T2-weighted and FLAIR MRI brain images 

were evaluated against the ground truth data. Table 3, Table 

4 and Table 5 show the results of mean percentage of AO, 

FPR and FNR of 30 MRI brain images for each image 

sequences. Overall, mathematical morphology segmentation 

using double thresholding produced more robust and accurate 

skull-stripping compared to Otsu’s thresholding as illustrated 

in Higher mean percentages of intracranial tissues are 

extracted using double thresholding as well as lower rate of 

oversegmentation and undersegmentation. Furthermore, 

mathematical morphology segmentation using double 

thresholding took shorter time to complete the segmentation 

compared to region growing. Table 10 illustrated an average 

execution time of mathematical morphology segmentation 

and region growing using double thresholding. For example, 

morphology segmentation took 2 seconds to complete 

compared to region growing which took 2.5 minutes for 

T2-weighted images. Thus, skull stripping region growing 

required high CPU time. 

Mathematical morphology has an advantage over region 

growing since this algorithm only visits the relevant pixels of 

the image (i.e. K,3,2,1,0; =∈ kAX k  
given brain region, 

A) and less computational compared to region growing. On 

the other hand, region growing is highly computational since 

the algorithm requires all neighbouring pixels of the seed 

points to be visited. Furthermore, region growing also 

requires the correct selection of seed point and threshold 

values as different seed point and threshold values will 

produce different results. Therefore, region growing 

algorithm is highly dependent on the selection of seed point 

and threshold values. 

 

Table 10. Execution time of T1-Weighted, T2-Weighted and 

FLAIR images using Region Growing and Mathematical 

Morphology 

Data Set 

Execution Time 

Region 

Growing 

 Mathematical 

Morphology 

T1-Weighted 2.5 minutes 2 seconds 

T2-Weighted 2.5 minutes 2 seconds 

FLAIR 3 minutes 2 seconds 

Average 2.67 minutes 2 seconds 
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Image Sequence Original Image 
Binarization of Double 

Threshold Values 

Morphological of 

Double Threshold 

Values 

Binarization of Otsu 

Threshold Values 

Morphological of Otsu 

Threshold Value 

T1-Weighted 

    

T2-Weighted 

    

FLAIR 

  

Figure 10. The results of skull-stripped images of the proposed Mathematical Morphology 
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Image Sequence Original Image Automated Seed Point Selection 
Region Growing 

Results 

T1-Weighted 

  

T2-Weighted 

  

FLAIR 

  

Figure 11. The results of skull-stripped images of the proposed Region Growing 
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