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Abstract: In a virtual sculpture project, we would like  

to sculpt in real-time 3D objects sampled in volume elements 
(voxels). The drawback of this kind of representation is that a 
very huge number of voxels is required to represent large and 
detailed objects. Consequently, the memory cost will be very 
large and the user/object interaction will be slowed down. We 
proposed a multiresolution representation of 3D objects thanks 
to a 3D wavelet transform, in order to reduce the memory cost 
and to adapt the processing and display times with a desired level 
of detail. In order to allow real-time performance during the 
sculpting process, we propose in this paper a repartition 
structure, which is an octree whose each node contains maximal 
and minimal density for each area of the 3D object. Moreover, we 
combine this structure with a multiresolution collision detection, 
to accelerate the sculpting process during the addition and 
subtraction of matter into the 3D object thanks to a tool, both 
with the same multiresolution representation. 
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I. Introduction 
In this paper, we present a multiresolution model based on 3D 
wavelets to represent a 3D object as a discrete set of volume 
elements (voxels). Such a discrete representation is of great 
use in: 
• medical imaging: management of MRI or CT-scan data; 
• surgical simulations: bone surgery, dental surgery; 
• scientific simulations: simulation of heterogeneous 

systems such as semiconductor device simulation, 
molecular dynamics, plasma physics, and fluid mechanics; 

• virtual sculpture: easy simulation of sculpture operations 
such as addition or subtraction of material by simply 
adding or removing voxels. 

The major issue of discrete representations of volumes is the 
huge memory cost of very large 3D objects. proposed a 
multiresolution sculpture system based on 3D Haar wavelets 
[1]. A major advantage of this model is that sculpted objects 
can then be used as new tools, because the same model is used 
for both objects and tools. However, when 3D objects and 
tools are very large, during sculpture operations, the number of 

useful voxels of objects and tools can become very huge. 
Consequently, the sculpture operations become slower. In 
order to accelerate the sculpture operations, we propose in this 
paper several solutions: 
• First, we propose a collision detection algorithm based on 

an octree, in order to refine the collision detection between 
objects and tools, both using the same model, based on 3D 
wavelets. 

• Second, we use a min/max octree, that we called 
repartition structure, where each node contains maximal 
and minimal density for each area of the associated object. 

• Third, we speed up the collision detection algorithm thanks 
to the repartition structure during sculpture operations. 

II. Previous work 
In this paper, we would like to sculpt in real-time 3D objects 
with tools, both using the same model, based on 3D wavelets. 
In order to accelerate the sculpture operations, we would like a 
multiresolution collision detection algorithm. We present 
multiresolution representation in section II.A, in order to 
represent 3D objects and tools.  Then, we describe in section 
II.B existing methods of virtual sculpture. Finally, we present 
in section II.C existing collision detection algorithms. 
 

A.  Multiresolution representations 
In this paper, we tackle the problem of virtual sculpture of a 
very large 3D object with a tool, both represented with spatial 
enumerations. Such a spatial enumeration is a set of volume 
elements called voxels, obtained by sampling the volume of a 
3D object. It can be seen as a 3D image composed of voxels, 
while a 2D image is a bidimensional array composed of pixels.  

To make a spatial enumeration from a 3D object, several 
methods have already been suggested. The simplest way is a 
uniform discrete spatial enumeration, by regularly sampling 
the object into voxels with the same size. However, a major 
drawback of this representation is the large number of voxels 
needed to represent very large objects with detailed features 
(for example, a 3D image in 1024×1024×1024 has more than 
one billion voxels). This entails three main problems. The first 
one is the important memory cost to store this uniform spatial 
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enumeration. The second one is that the display of these 
objects becomes slower. Finally, operations on these objects 
such as sculpture actions or displacements become less and 
less interactive.  

To further improve the use of spatial enumeration, several 
methods of multiresolution representations have been 
proposed. Therefore, processing and display times are adapted 
with the desired level of detail. Among these methods, there 
are trees and 3D wavelet decomposition.  

An octree can also be seen as a hierarchical representation 
of 3D object. The maximum level of subdivision of the octree 
defines the finest level of detail of a multiresolution 
representation. Boada et al. [1] define a section in an octree 
that determines the displayed nodes for a given level of detail. 
This method is extended to a “n-tree” by Ferley et al. [3].  

The second multirésolution methods use bounding volume 
trees, used in collision detection. These methods propose to 
modify properties of the voxels, such as the size with AABB 
(axis-aligned-bounding-box) method [4], the orientation with 
OBB (oriented-bounding-box) method[5], or even the shape 
with sphere tree [6][7]. Thanks to these three methods, the 
object rendering is optimized because the original object 
shape can be approached with less voxels than with a simple 
uniform spatial enumeration, but to the cost of higher 
computation times. 

The third multiresolution method uses wavelet transform. 
Wavelets are a mathematical tool for representing functions 
hierarchically. In our case, these functions are discrete 3D 
functions that define a set of voxels. Muraki [8] shows the use 
of 3D Haar wavelets [9] to represent a 3D object. Pinnamaneni 
et al. [10] build a 3D Haar wavelet decomposition from a 
sequence of 1D Haar wavelet decomposition in each direction 
of the 3D voxels grid. Wavelet decomposition allows us to 
display a 3D object faster according to the level of detail. It 
also permits to drastically cut down the memory cost, because 
high compression ratio can be achieved on wavelets 
coefficients, especially if lossy compression schemes are used. 
Heurtebise [11] uses same wavelet decomposition into a 
sequence of 1D wavelet transform in each direction of the 3D 
voxels grid, but he studied several wavelets, such as Haar 
wavelet, orthogonal Daubechies wavelet, bi-orthogonal 
Cohen-Daubechies-Feauveau wavelet… 
 

B.  Virtual sculpture 
In a voxel representation, several kinds of information can be 
stored, such as density of matter, color, material, hardness, 
elasticity… According to the kind of information, the mode of 
representation may be different. 

A first volumetric method has been implemented by 
Galyean and Hughes [12]. Their model is defined with a 
uniform discrete spatial enumeration that contains density 
values. 3D tools modify the discrete potentials describing the 
object. Basic operations like addition or subtraction, and 
several tool definitions (heat gun, sand paper or color 
modifier) are proposed.  

Ayasse and Müller [13] perform sculpture operations by the 
use of CSG (Constructive Solid Geometry). Complex objects 
are created by successive modifications of the material with a 
tool according to simple operations such as difference, union 

or intersection. However, the object and the tool are 
represented by simple uniform spatial enumerations. 
Moreover, voxels are limited to binary values (full or empty). 
The authors propose to reduce the computation time for each 
sculpture operation by using only the effective voxels 
according to a given displacement of the tool. However, they 
do not use a multiresolution representation to improve the 
display performance.  

Raffin et al. [14] perform sculpture operation by moving the 
matter, into a 3D object, with a tool. Both of them are 
represented by a set of voxels. The authors proposed a method 
of diffusion of the matter by decomposing it along each axis x, 
y and z according the normal of collision point between the 
tool and the matter to be sculpted. They proposed also an 
algorithm to distribute the matter to surface neighbors, using a 
plasticity value of the object matter, in order to perform a more 
realistic result. The main drawback of this method is the size of 
the tool in order to have real-time performances.  

Dewaele and Cani [15] proposed a deformable model for 
virtual clay. Sculpture operations are addition, subtraction and 
deformation of matter through the interaction with rigid tools. 
Their deformations, both large and small scale, mimic the 
effects of tools on real clay. The authors proposed two steps. 
The first one is the processing of the influence of static tools on 
the matter, by determining the displacement vector for each 
voxel of the matter. The second one is the displacement of the 
matter from each voxel of the object to its neighbours. 

Angelidis et al. [16] presented sweepers, a new class of 
space deformations suitable for interactive and intuitive virtual 
sculpture. When an artist moves a tool, it causes a deformation 
of the working shape along the path of the tool: the authors 
used simple path (translation, scaling or rotation). Tools are 
simply shapes, subsets of 3D space. An advantage is that he 
artist can use shapes already created as new tools to make 
more complex shapes. Furthermore, more complex 
deformations are achieved by using several tools 
simultaneously in the same region. For representing shapes, 
Angelidis et al. [16] presented a mesh refinement and 
decimation algorithm that takes advantage of the definition of 
deformations. 

In the Kizamu project, Perry and Frisken [17] use ADFs 
(Adaptively sampled Distance Fields) to model and to sculpt 
the material. A 3D object is sampled adaptively with a 3D grid 
according to the details of the object. Each grid cell contains a 
scalar specifying the minimum distance to the object shape. 
This distance is signed to distinguish the inside from the 
outside of the shape. Sculpture operations use CSG, but the 
Euclidean distance field used instead of density raises 
discontinuity problems and increases the update computation 
time.  

Bærentzen and Christensen [18] propose the Level-Set 
method to deform the material. This method stores distance 
fields around the exterior of a 3D object. The single tool is a 
blob (a sphere) represented by an implicit function, which 
limits the sculpture capabilities.  

To represent an object to be sculpted, Ferley et al. [3] also 
use distance fields, stored in a “n-tree” hierarchical 
representation where the sampling rate depends on object’s 
details. The tool is limited to an ellipsoid defined by an 
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implicit function discretized to perform sculpture actions on 
the object: this limitation is very restrictive if the user wishes 
to use more complex tool shapes to perform specific sculpture 
actions. Raffin et al. [19] propose a hierarchical model of 
virtual sculpture based on an octree [20]. However, the tools, 
defined as voxels sets, remain parallel to the axis, which limits 
the orientation of the tool and the sculpture operations. 

We proposed in [1] a multiresolution sculpture system 
based on 3D Haar wavelets. A major advantage of this model 
is that sculpted objects can then be used as new tools, because 
the same model is used for both objects and tools. Moreover, 
any orientation of tools [21] is possible, which does not limit 
the sculpture operations. Furthermore, we proposed in [22] an 
extension of this model, that combines octree and wavelet 
transform (a 3D object is roughly sampled in an octree, where 
each leaf containing data is thinly sampled thanks to a 3D 
wavelet transform), to manage very large volume datasets. 
 

C.  Spatial Collision Detection 
In order to deform the matter with a tool, we need to know if 
tools collide the matter. Two approaches can be used to 
determine the collision between tools and the matter: static 
collision detection (only the positions of tools and the matter 
are known at distinct instant) and dynamic collision detection 
(the movement of tools and object are considered: the 
positions of the tools and the matter are known at all instants). 

The obvious approaches to collision detection for multiple 
and/or very detailed objects are very slow. Indeed, if we want 
to know the potential collision between N objects, checking 
the collision between every object against every other object is 
too inefficient to be used, because the complexity is quadratic, 
in O(N2). Moreover, if we want to know the potential collision 
between two objects with complex geometry, checking the 
collision between these objects each face against each other 
face, is itself quite slow. 

Thus, considerable research has been applied to speed up 
the problem. Kitamura et al. [22], Hubbard [6], and O’Sullivan 
and Dingliana [24] used hybrid collision detection, with the 
following phases: 
• Broad phase: 

o Phase 1: progressive delimitation levels. This phase 
restricts the subspaces with a potential by using 
hierarchies of space subdivisions. 

o Phase 2: accurate broad levels. In this phase, the 
approximate test is performed to identify interfering 
objects using a coarse representation of object shapes 
(such as bounding volumes). 

• Narrow phase: 
o Phase 3: progressive refinement levels. Hierarchical 

approximations are suitable to well determine the 
object-parts in potential collision. 

o Phase 4: exact level. The tests use a tightly 
representation of object shapes to accurately identify 
any object parts, selected in the previous phase, that 
actually cause interference. 

In the literature, several data structures are used to solve 
collision queries. We can classify these data structures in 

different categories depending on the criterion followed to 
model the workspace and objects. 

For geometric models, collision, proximity and interference 
queries are computed by using the geometry of the two 
possible candidate objects. In the narrow phase at the exact 
level, the queries are formulated by using the geometry of 
objects. Dobkin and Kirkpatrick [25] proposed a collision 
detection algorithm between two polyhedrons in O(log2 v) 
where v is the average number of vertex of two polyhedrons. 
This method requires the convexity of polyhedrons, and only 
one collision point is given even if more collision points exist. 
Linear programming algorithms [26] allow checking collision 
between two convex polytopes if and only if there exists a 
separation plane between them. Feature based algorithms 
focus on the relationships between the sets of features 
(vertices, edges and faces) of the two polytopes. The algorithm 
of Lin-Canny [27] constructs the Voronoï Region (set of 
points closer to a feature than any other) of each feature. Then 
it computes the distance between the closest features of two 
polytopes to elucidate whether they collide. This algorithm 
takes O(f) time, where f is the number of features. The method 
takes advantage of coherence because closest features will not 
change significantly between two consecutive frames.  
Simplex based algorithms treat the polytopes as the 
convex-hull of a point set. Gilbert et al. [28] presented the GJK 
algorithm, which detects collisions and gives a measure of 
interpenetration. Cameron [29] developed the Enhanced GJK 
algorithm. Volume minimization based algorithms focus on 
the intersection volume of two objects. Faure et al. [30] 
proposed an image-based method of the intersection volume 
between two polyhedra, using surface rasterization in three 
orthogonal directions. Moreover, the authors proposed the 
integration of pressure forces over the pixels of the 
intersection volume, to compute forces applied to the vertices 
of the polyhedra. Their method handles deformable and rigid 
objects without any precomputation, by combining the speed 
of surface-based methods [31][32] with the robustness of 
distance-based methods [33][34]. 

For space partition trees, space decomposition techniques in 
a hierarchical ways are considered. In the broad phase at the 
progressive delimitation level, the queries are often 
formulated by using the space partition trees. However, these 
trees are also used to refine collision detection between two 
objects, during the narrow phase at the progressive refinement 
levels. Examples of space partition hierarchies include regular 
grids of voxels [30], octrees [6][22], BSP-trees [35], kD-trees 
and their extensions [36][37]. The advantage of regular grids 
of voxels is the computation time in O(1) for the collision 
detection, but the major drawback is the huge memory cost of 
this method, for very detailed workspace. The advantage of 
octrees is the reduced memory cost in relation to the previous 
method. The computation time is proportional to the number 
of levels of subdivision of the octrees. For BSP-trees and 
kD-trees [35][36][37], the efficiency depends on the size 
and/or the number of levels of subdivision of the tree. The 
main drawback is the build of the tree in O(N2), where N is the 
number of objects. 

For bounding volumes (BV), the objects are enclosed in 
volumes of simple geometry such as spheres, AABBs, OBBs, 
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k-DOPs and convex hulls. BVs are used during the broad 
phase at accurate broad levels, in order to check easily and 
quickly collision between two objects. However, BVs are 
often used in hierarchical volume representations, called 
bounding volume trees: sphere trees [6][7], AABB-trees [4], 
OBB-trees [5], k-DOP trees [38] and convex hull trees  [26]. 
BV trees are used in the narrow phase at progressive 
refinement levels. Klosowski [38] quantized the computation 
time for collision detection. They demonstrated that the 
thinness of BV influences the number of collision tests 
between each pair of BVs. Moreover, the simplicity of BV 
influences the efficiency of the intersection test between two 
BVs. 

III. Our original contribution 
Many models have already been proposed in order to represent 
3D objects as discrete sets of voxels. We have already 
proposed in previous papers a discrete representation to 
reduce the memory cost and display times, which become very 
huge when 3D objects are very large. 

In this paper, we propose to solve the problem of 
computation times, which become very important, when 3D 
objects are very large and/or very detailed. For that, we 
propose the use of a min/max octree that we called “repartition 
structure”. Indeed, it allows us to easily and quickly determine 
the maximal and minimal densities of an area of a 3D object.  
The main contribution of this paper is to use this structure to 
enhance the collision detection between a tool and the matter, 
during the sculpture operations: as the tool is moved by the 
user, its voxels are in different local frame than the sculpture’s 
one. Such operations of addition and subtraction of material 
are then simply performed by modifying density values of 
voxels. 

The remainder of the paper is organized as follows. In 
section IV, we describe the multiresolution model based on 3D 
wavelets, proposed in a previous paper. In section V, we 
describe our repartition structure. Then, in section VI, we 
propose a collision detection algorithm between objects and 
tools, both using the same multiresolution model. In section 
VII, we present dynamical and interactive modifications of 3D 
objects thanks to sculpting tools. Then, we conclude and 
present future works. 

IV. Multiresolution model 
In a virtual sculpture project, we represent the 3D objects to be 
sculpted as a discrete set of voxels to easily handle subtraction, 
addition and displacement of matter by tools. Each voxel 
contains a density value coded in a byte (from 0 for an empty 
voxel to 255 for a full one). However, a uniform spatial 
enumeration is expensive in processing and display times.  

Thus, we use our multiresolution model based on 3D Haar 
wavelets [1], based on the hierarchical structure proposed by 
Pinnamaneni et al. [10]. This principle can be extended to 
other discrete wavelet transform [11], such as orthogonal 
wavelets, bi-orthogonal wavelets, interpolated wavelets… For 
each level of details, the 1D wavelet transformation is applied 
in x-, y- and z-direction successively (Figure 1). For each 
transformation step, we have a block ‘L’ with low-resolution 

coefficients obtained by a low-pass filter, and a block ‘H’ with 
detail coefficients obtained by a high-pass filter. 

We display this discrete object with the Marching Cubes 
algorithm [39] that provides a smooth surface instead of a set 
of blocky voxels. During display, they take the advantage of 
the multiresolution nature of the model given by the 3D 
wavelets to display the more appropriate level of details 
according to the situation (distance between the object and the 
point of view, needed frame rate). Moreover, we implemented 
a data cache [1] that improves performances by storing in 
memory the useful levels of detail, in order to avoid extracting 
the level each time we need to use it. 

 

 

Figure 1. 3D Haar wavelet transform. 

V. The repartition structure 
In this paper, we use this same model to represent both objects 
and tools. So, we will take the advantage of the multiresolution 
representation to accelerate the processing times, during the 
collision detection and the sculpting process.  

Indeed, consider an area of the 3D object to be sculpted. If 
the density values at a given level of detail n allow us to deduce 
that no sculpture operation is possible in this area, we can stop 
the refinement processing steps of the collision detection at the 
level of detail n. However, the density values at the level of 
detail n do not allow us to define the interval of density values 
(from 0 to 255) at the rougher level of detail n – 1, except if we 
use the detail coefficients of the wavelet transform. So, in 
order to define the density repartition of an area of N voxels of 
the 3D object at a level of detail, we need to know the 
following data at a finer level of detail: the density repartition 
of this area (N/8 voxels), and all the detail coefficients (7N/8 
detail coefficients) of the wavelet transform in this area. 
Consequently, in order to define the density repartition of an 
area of N voxels of the 3D object, at a level of detail, we need 
to know N coefficients, at a finer level of detail. 

In order to reduce the processing time to define the density 
repartition of an area of a 3D object, we propose the use of a 
min/max octree, called repartition structure. This structure is 
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an octree that stores the density repartition of this 3D object, at 
different levels of detail. Each node contains two values: the 
maximal and minimal densities of an area of the 3D object 
contained in this node. Figure 2 illustrates this structure in the 
2D case thanks to a quadtree: this principle is the same in 3D 
thanks to an octree. As shown on figure 2, the quadtree is 
completely developed: the leaves are the areas, with a size of 
2×2×2 voxels, and the root is the area, with a size of n×n×n 
voxels (with n = 2p and p is the number of levels of detail of the 
3D object). 

Moreover, for each non-terminal node (i.e. each node 
different from a leaf) of this octree, the minimal density 
(respectively the maximal density) is the smallest (respectively 
the greatest) of the minimal densities (respectively the 
maximal densities) of all the child nodes. For example of 
figure 2, the minimal density of the area B1 is defined by: 
min(B1) = min( min(B5), min(B6), min(B9), min(B10) ). 

As the octree is completely developed with a structure set by 
the size of the 3D object, we can represent this octree with a 
vector V, whose handling is easier, faster and cheaper in 
memory: 
• The first element, at the position 0, is the root of the octree. 
• The size of the vector V is N = (n3 – 1) / 7, where n is the 

size of the 3D object. 
• The size of the repartition structure is S = 2N × d, where d 

is the number of bytes to store a density value (for 
example, 1 for ‘char’, 2 for ‘short int’ and 4 for ‘long int’, 
on 32-bits operating system). 

• The element, at the position i < INT( (N – 1)/8 ), has eight 
children from the position  j1 = 8i + 1 to the position 
j8 = 8i + 8. The operator ‘INT(x)’ correspond to the integer 
part of ‘x’ 

• The element, at the position i > 0 has one parent at the 
position j = INT( (i – 1)/8 ). 

• The level of detail p of the octree contains the elements 
from the position ap = 1 + 8 + … + 8p – 1 to the position 
bp = ap + 8p – 1. Recursively, we have: a1 = 2; if p > 0, 
bp = 8ap; if p > 1, ap = bp – 1 + 1. 

The octree structure allows us to move easily from a node to its 
parent or its children into the repartition structure, as each 
node is set. The build of the repartition structure is easy and 
starts from the leaves to the root. For each leaf of the octree, 
we set the minimal and maximal densities thanks to the 3D 
objects at the finest level of detail. Once all the leaves are 
filled, we update the repartition structure from the leaves to the 
root. 

During the sculpture process (see section VII), the 

repartition structure will be updated according to the modified 
voxels of the 3D object. If one voxel is modified, the minimal 
or maximal density of the corresponding leaf of the octree will 
be modified, and we update the repartition structure from this 
leaf to the root of the octree. However, if several voxels are 
modified, the update of the octree will be made in one pass, 
rather than density by density. 

VI. Our collision detection algorithm 
In section II.C, we have presented the classification given by 
O’Sullivan and Dingliana [24]. For the broad phase, there 
exist several performing algorithms to check quickly collision 
between N objects and to determine the candidate pairs of 
objects in collision. Among these algorithms, we will use the 
“sweep and prune” algorithm [40] that is very efficient. For 
the narrow phase, we will use the hierarchical structure of 
multiresolution model of the 3D objects, in order to refine 
progressively the collision detection from the entire object (the 
roughest level of detail) to the different voxels (the finest level 
of detail). 
 

A. The complete hierarchical collision detection 
In order to refine the collision detection during the narrow 
phase thanks to 3D wavelet transform, we propose a very easy 
method, based on the collision detection thanks to octree 
method, with following conditions: 
• Each node of the octree becomes a voxel at a given level of 

detail of 3D wavelet transform. 
• The eight children of a node of the octree become the eight 

underlying voxels at a more detailed level of detail of 3D 
wavelet transform. 

• The root of the octree becomes the voxel at the roughest 
level of detail of 3D wavelet transform. 

• A voxel whose density value is lower than threshold T, is 
considered as empty, else it is considered as full or 
partially full. It is necessary that threshold T is very small 
in relation to the maximal density. 

The main drawback of this algorithm is the necessity to go to 
the finest level of detail of each object in order to check 
collision between two voxels for each object. Indeed, if two 
objects are very detailed, the computation time will be very 
high, and the collision detection can be non-interactive. In 
order to accelerate the collision detection, we propose to use 
not only a bounding volume of each voxel, but also the 
repartition structure (described in section V). 

 
Figure 2. Repartition structure, in the 2D case: a quadtree (on right) contains the minimal (min(Bi)) 

and maximal (max(Bi)) values of the densities for each zones Bi of the 2D image (on left). 
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B. The choice of bounding volume (BVs) 
The choice of BVs for the detection collision is very crucial, 
because the computation time depends on this choice. 

Each 3D object is sampled in a set of voxels that are cubes. 
If we check collision between two 3D objects, sampled in two 
sets of cubes, the simplest method of collision detection uses 
the OBB to represent each cube, in their respective orientation. 
However, the computation time of collision detection between 
two OBBs is greater than two AABBs or two spheres: 200 
operations needed to perform the interference test between 
two OBBs versus 6 for AABBs and 8 for spheres. Therefore, 
we prefer to use AABB or sphere to represent each voxel in 
order to reduce the computation time of collision detection. If 
we use AABBs to represent each voxel of 3D objects, it is 
necessary to compute again the AABBs for each voxel when 
3D object rotates. In order to allow the rotation of 3D objects, 
we prefer using spheres to represent each voxel during the 
collision detection. 

However, if we want to reduce the most possible the 
computation time and to allow any orientation of 3D objects, 
we use the smallest AABB of the bounding sphere for each 
voxel during collision detection, in despite of the tightness of 
the detection. Indeed, for any orientation of 3D objects, the 
AABB of the bounding sphere for each voxel does not change. 
Moreover, the computation time of collision detection 
between two spheres is greater than two AABBs of two 
spheres: 8 operations needed to perform the interference test 
between two spheres versus 6 for AABBs. 

 

C. Enhanced hierarchical collision detection 
We propose an enhanced hierarchical collision detection 
algorithm, based on our repartition structure.  Consider Ni the 
node of the repartition structure of the 3D object i, for each 
level of detail LODi. If the BVs of N1 and N2 have no 
intersection, there is no collision: refinement of collision 
detection is useless. 

Consider the case of the BVs of N1 and N2 are in collision. If 
repartition structures give for N1 or/and N2 maximal densities 
that do not exceed the threshold T, there is no collision. On the 
other hand, if repartition structures give for N1 and N2 minimal 
densities that exceed the threshold T, there is necessarily 

collision for the voxels of each object at the finest level of 
detail, contained in the intersection of the BVs of N1 and N2. In 
these two cases, refinement of collision detection is useless. 
Else, we refine the smallest voxel in size between N1 and N2, if 
possible. However, if no refinement is possible for both N1 and 
N2, so all the voxels of two 3D objects, at the finest level of 
detail, are in the intersection of the BVs of N1 and N2. 

 With this method, it is no longer useful to know the 3D 
object for each level of detail, but only the repartition structure 
associated to the 3D object, which is cheaper in memory than 
the 3D object and its levels of detail, or even the 3D wavelet 
transform. Indeed, the repartition structure has a memory cost 
of (n3 – 1)/7 where n×n×n is the size of the 3D object (with n = 
2p and p is the number of levels of detail of the 3D object). 
Meanwhile, all the levels of detail of the 3D object have a 
memory cost of (8n3 – 1)/7 and the 3D wavelet transform has a 
memory cost of n3. 

VII. Virtual Sculpture 
Our model can easily handle sculpture operations by simply 
adding or removing matter into a 3D object thanks to a tool, 
i.e. by modifying the density values of each voxel of the object 
to be sculpted. A major advantage of our method is that the 
tool used for virtual sculpture has the same representation than 
the matter. So, the user can create his or her own tools to sculpt 
another 3D object. The tools can take any orientation and any 
position in relation to the object [1].  

 

A. Steps of the addition/subtraction of matter  
During the sculpture operations, such as addition and 
subtraction of matter thanks to a tool, a first phase allows to 
determine which voxels of the tool and the matter to be 
sculpted are in collision: this phase is called “collision 
detection phase”. The following operations are performed: 
• In a first step, we perform the collision detection, by using 

the “sweep and prune” algorithm to determine which tools 
Ti collides the matter M to be sculpted. 

• In a second step, we refine the collision detection between 
each tool Ti  and the matter M by using the algorithm 1. We 
obtain two lists LTi and LM of voxels for tool Ti and matter 
M, respectively. For this step, when we subtract the matter 

Algorithm 1. Simple collision detection algorithm between two blocks. 

Function COLL (voxels: VTi, VM; LOD: lodTi, lodM) 
 If VTi collides VM 
 Then 
   Variable V’M 
   If (Op = ‘subtraction of matter’) 
   Then V’M = VM 
   Else V’M = Max density – VM 
  
   If (VTi ≥ T and V’M ≥ T) then 
      If (lodTi = 0 and lodM = 0) then 
         Add VTi to the list LTi, and VM to the list LM 
      Else if (lodTi = 0 or (lodM ≠ 0  and size(VM) > size(VTi))) then 
         For each VM[k] ⊂ VM, with LOD lodM-1 Do COLL (VTi, VM[k], lodTi, lodM–1) 
      Else 
         For each VTi[k] ⊂ VTi, with LOD lodTi–1 Do COLL (VTi[k], VM, lodTi–1, lodM) 
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with a tool, we check collision between each voxel VTi of 
the tool Ti with the dual V'M of the voxel VM of the matter 
M, whose value is equal to the maximal density minus the 
current density. 
Then, we perform a “sculpting phase” whose operations 

are the following: 
• In a first step, we apply the method of discrete rotation, 

presented by Heurtebise and Thon [21], only for the voxels 
in the intersection area, which is the AABB of the list LTi of 
voxels for tool Ti. We obtain a new list LR,Ti of voxels of the 
tool after the discrete rotation. 

• In a second step, for each voxel VM of the matter M, with 
VM included in LM, we find which voxels VTi of the tool Ti, 
with VTi included in LR,Ti, intersect it. Then we compute the 
new value of VM according to the selected sculpting mode 
and the filling percentage D of the voxel VM by the voxels 
VTi of the tool Ti. This voxel value is clamped to the 
maximal value (respectively the minimal value) during the 
operation of addition (respectively subtraction) of matter, 
because we have density values in a given interval.  
Figure 3 shows this principle in 2D where the values are 
given in percentage, i.e. 100% (respectively 0%) is used 
for the maximal density (respectively the minimal density). 
The principle is the same in 3D. 
o In the “addition of matter” mode, the filling 

percentage D is given to the value of the voxel VM of 
the matter M, only if the filling percentage D is 
greater than the value of the voxel VM. 

o In the “subtraction of matter” mode, the empty 
percentage D', equal to the difference between the 
maximal density and D, is given to the value of the 
voxel VM of the matter M, only if the empty 
percentage D' is smaller than the value of the voxel 
VM. 

• In a third step, we modify the wavelet data according to 
this new voxel value. In order to accelerate this step, we 
can update the wavelet data after the modification of a set 
of voxels VM of the matter, instead of voxel by voxel. 

• In a fourth step, we update the repartition structure 
according to the modified voxels. 

• In a last step, for each level of detail, we use the Marching 
Cubes algorithm to rebuild the triangulated surface, only 
for the modified parts of the 3D object, corresponding to 
the matter M, to improve the computation time.  

 

 
Figure 3. Addition (c) and subtraction (d) of matter 

to a cubic object (a) with a spherical tool (b). 

Algorithm 2. Hierarchical collision detection algorithm between two blocks. 

Function ENH_COLL (nodes: Ntool, Nobj; mode: Op) 
 If Ntool collides Nobj 
 Then 
   Variable Nmax, Nmin 
   If (Op = ‘subtraction of matter’) 
   Then Nmax = Nobj,max   and   Nmin = Nobj,min 
   Else Nmax = Max density – Nobj,min   and   Nmin = Max density – Nobj,max 
 
   If (Ntool,max ≥ T) and (Nmax ≥ T) then 
      If ((Ntool is node or Ntool,min ≥ T) and (Nobj is node or Nmin ≥ T)) then 
         Add to the list C[tool,obj],  
         all the pairs (Vtool,Vobj) ⊂ (Ntool ∩ Nobj), with LOD = 0 
      Else if (Nobj is node or Nmin ≥ T) then 
         For each child Ntool[i] of node Ntool Do ENH_COLL (Nobj, Ntool[i], Op) 
      Else if (Ntool is node or Ntool,min ≥ T) then 
         For each child Nobj[i] of node Nobject Do ENH_COLL (Nobj[i], Ntool, Op) 
      Else if (size(Ntool) > size(Nobj)) then 
         For each child Ntool[i] of node Ntool Do ENH_COLL (Nobj, Ntool[i], Op) 
      Else 
         For each child Nobj[i] of node Nobj Do ENH_COLL (Nobj[i], Ntool, Op) 
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B. Enhancement of the addition/subtraction of matter 
An enhancement of this sculpting method is the use of the 
repartition structure, in the algorithm 2, to apply sculpting 
operations not at the finest level of detail, but at a rougher level 
of detail, in order to reduce the computation times, if 
necessary. The interest is to permit to modify interactively the 
matter with a tool. In the second step of the collision detection 
phase, we stored in the list C[Ti,M] the couples of voxels 
(Vti,VM) or (Vti,V'M) of the tool Ti and the matter M, 
respectively, in collision at the finest level of detail of two 
objects.  

C. Experiments 
The results given in this paper have been obtained on a PC 
with an Intel Core 2 Duo 3 GHz with 4 GB memory, a NVidia 
GeForce 9800 GTX+ with 1 GB video memory, and Windows 
Seven 32 bits. 

To determine the performance of each algorithm in function 
of the size of the tool for an object in 512×512×512 voxels, we 
perform two kinds of tests: addition and subtraction of matter. 
For that, we create a filled (respectively empty) cube and a tool 
with a given shape (sphere), for subtraction (respectively 
addition) of matter. Then, we move the tool inside the 3D 
object with a given step and we compute the average times per 
frame of sculpture operations. For each algorithm, the 
sculpture times are given in table 1. In this table, we compare 
our algorithms with a virtual sculpture method without 
collision detection algorithm (called algorithm 0 in table 1) to 
refine the sculpture operations. In order to compare the 
collision detection algorithms, the sculpture time excludes the 
display times, which depends on the level of detail for display. 
 

Table 1. Average sculpture times (in milliseconds) 
per frame, for addition and subtraction of matter,  

and several size of tool in n×n×n = n3 voxels. 

Algorithms Addition of matter Subtraction of matter 
323 643 1283 323 643 1283 

#0 28.5 137.7 1001 27.9 138.4 1027 
#1 38.9 195.9 1558 37.7 183.3 1572 
#2 29.3 103.8 782.2 29.2 102.5 781.2 

 
The table 1 shows that the sculpture times depend on the 

size of the tool and the collision detection algorithm. Indeed, if 
the size of the tool increases, the average number of voxels of 
the tool in collision with the matter increases, consequently the 
sculpture times increase. 

Furthermore, the sculpture times, for the algorithm 1, are 
higher than for the algorithm 0 without collision detection. 
Indeed, the algorithm 1 uses a collision detection based on an 
octree method, where the detection is made on all the levels of 
detail of the object and the tool. So, the collision times become 
so high that the sculpture times, for the algorithm 1, is higher 
than in the case where no collision detection is used. 

However, if we use the algorithm 2, based on our repartition 
structure, the sculpture times become smaller than the ones 
with the algorithm 1 or the algorithm 0 without collision 
detection. Indeed, it is not needed to detect the collision 
between a tool and the matter at the finest level of detail, 
because the algorithm 1 stops the refinement before the finest 

level of detail when minimal density is greater than a given 
threshold. Furthermore, as the repartition structure, based on 
an octree, is completely developed, the processing time for 
each displacement into the repartition structure is optimized. 

On the other hand, the repartition structure associated to a 
3D object is cheaper in memory than the 3D object and its 
levels of detail, or even the 3D wavelet transform. Indeed, the 
repartition structure has a memory cost of (n3 – 1)/7 where 
n×n×n is the size of the 3D object (with n = 2p and p is the 
number of levels of detail of the 3D object). All the levels of 
detail of the 3D object have a memory cost of (8n3 – 1)/7 and 
the 3D wavelet transform has a memory cost of n3. 

Consequently, the repartition structure allows us to reduce 
the memory cost and the sculpture times during the sculpture 
process, thanks to the use of detection collision algorithm 
based on the repartition structure. 

 

  
 (a) Teeth before (b) Teeth after 

     
 (c) Vetebra before (d) Vertebra after 

Figure 4. Teeth (a) and (b), and human lumbar vertebral body 
L3 (c) and (d), both sculpted with several tools (sphere and 

cylinder, in different size between 8×8×8 and in 64×64×64), 
thanks to the two kinds of sculpture operation: addition and 
subtraction of matter. The collision detection algorithm used 
for these sculptures is the algorithm 2. The framerate during 
the sculpture operations and the display is upper than 5 FPS. 

VIII. Conclusion 
We have presented in this paper a multiresolution model for 
virtual sculpture of 3D objects with tools, using 3D wavelet. 
The major drawbacks of multiresolution model [1] are the 
problem of computation times and the limitation of the 
memory size, which become very important, when 3D objects 
are very large and/or very detailed. In order to solve these 
problems, we proposed in the paper the use of a min/max 
octree that allows us to easily and quickly know the maximal 
and minimal densities of an area of a 3D object. Moreover, 
during the sculpture operation, we do not need to store all the 
levels of detail of our multiresolution model thanks to this 
structure. Then, our main contribution was the use of this 
structure to enhance the collision detection between a tool and 
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the matter to be sculpted, during the sculpture operations. 
Finally, we simply perform operations of addition and 
subtraction of material by modifying density values of voxels. 
To verify the applicability of our sculpting system, we have 
conducted many sculpting sessions, which have resulted in 
numerous interesting sculptures. Two examples are shown on 
figures 4(a) and 4(b): Dental Scan [41] in 512×512×167 
voxels, and on figures 4(c) and 4(d): micro-CT scan of a 
human lumbar vertebral body L3 [42] in 244×512×512 voxels 

IX. Future work 
Many improvements of our sculpture system are possible, by 
investigating open issues such as dynamical collision 
detection, other sculpture operations, realistic deformation, 
memory cost or computation time. 

Our collision detection algorithm does not allow us to know 
if a tool collides the matter between two distinct instants. We 
plan to extend our collision detection algorithm to the 
spatio-temporal collision detection, in order to have realistic 
sculpting operation. 

We will also investigate other sculpture operations, such as 
the displacement of the matter, and we plan to take more 
advantage of the levels of detail of the 3D Haar wavelet, in 
order to accelerate these sculpture operations. In order to 
obtain a realistic deformation of the matter by a tool, we plan 
to add other information into our model, such as viscosity or 
hardness. 

Memory cost to store very large 3D objects in memory can 
be very huge. Consequently, we plan to use our repartition 
structure with the extended model, presented by Heurtebise et 
al. in [22], which combines octree and wavelets: a 3D object is 
roughly sampled in an octree, where each leaf containing data 
is thinly sampled thanks to a 3D wavelet transform. 
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