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Starting observations

1 In many modelling problems, there exists a monotone relationship
between some of the input variables and the output variable

2 Monotonicity is a common property of evaluation and selection
procedures

3 This monotone relationship may not be fully present in the
observed input-output data due to data imperfections

4 Monotonicity is a global property in contrast to a local property
such as continuity

5 In case the monotonicity property applies, any violation of it is
simply unacceptable
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1. Fuzzy rule-based modelling 1.1. Fuzzy rule bases

Soil erosion

Phenomenon: loss of soil by erosion increases with increasing slope angle
and decreasing soil coverage with vegetation
(Geoderma, Mitra et al., 1998)
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1. Fuzzy rule-based modelling 1.1. Fuzzy rule bases

Citrus sudden death

Phenomenon: distance covered by the vector transmitting citrus sudden
death to sweet orange trees increases with increasing wind intensity
(Ecological Modelling, M. da Silva Peixoto et al., 2008)

IF N IS calmness THEN R IS very small
IF N IS breeze THEN R IS very small
IF N IS whiff THEN R IS small
IF N IS weak THEN R IS medium
IF N IS moderate THEN R IS medium
IF N IS fresh THEN R IS big
IF N IS very fresh THEN R IS big
IF N IS strong THEN R IS very big
IF N IS very strong THEN R IS very big

Increasing, smooth rule base
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1. Fuzzy rule-based modelling 1.1. Fuzzy rule bases

Citrus sudden death
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1. Fuzzy rule-based modelling 1.1. Fuzzy rule bases

Fuzzy rule-based model

Model characteristics:

m input variables Xℓ and a single output variable Y

rules of the form

Rs : IF X1 IS B1
j1,s

AND . . . AND Xm IS Bm
jm,s

THEN Y IS Ais

linguistic values Bℓ
jℓ,s

of Xℓ: trapezoidal; fuzzy partition

linguistic values Ais : trapezoidal; fuzzy partition (bounded domain)

natural ordering on the linguistic values of each variable
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1. Fuzzy rule-based modelling 1.1. Fuzzy rule bases

Fuzzy partition

A1 A2 . . . An-1 An

Y

A(y)
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a1

lboutput

a2 a3 a4 a5 a2n-4 a2n-3 a2n-2 a2n-1 a2n

uboutput
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1. Fuzzy rule-based modelling 1.2. Monotone fuzzy rule-based models

Mamdani–Assilian fuzzy models

Observation

Mamdani–Assilian fuzzy models with a monotone rule base do not
necessarily result in a monotone input-output mapping

Monotone input-output behaviour

If the original rule base is complete and increasing, then the input-output
mapping can only be increasing in the following cases:

1 Center-of-Gravity defuzzification:

one input variable: basic t-norms TM, TP and TL

two or three input variables: TP and a smooth rule base

2 Mean-of-Maxima defuzzification:

one input variable: basic t-norms TM, TP and TL

two or more input variables: TM or TP, and a smooth rule base
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1. Fuzzy rule-based modelling 1.2. Monotone fuzzy rule-based models

Implication-based fuzzy models

Cumulative modifiers:

at-least modifier: ATL(C )(x) = sup{C (t) | t ≤ x}

at-most modifier: ATM(C )(x) = sup{C (t) | t ≥ x}
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1. Fuzzy rule-based modelling 1.2. Monotone fuzzy rule-based models

Implication-based fuzzy models

Connectives: left-continuous t-norm and its residual implicator

Modified rule bases:

ATL/ATM rule base: applying ATL/ATM to all antecedents and
consequents

ATLM rule base: union of the above

Monotone input-output mapping

If the original rule base is increasing, then the input-output mapping is
increasing in the following cases:

1 ATL rule base and First-of-Maxima defuzzification

2 ATM rule base and Last-of-Maxima defuzzification

3 ATLM rule base and Mean-of-Maxima defuzzification
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1. Fuzzy rule-based modelling 1.3. References
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2. Multi-class classification 2.1. Monotone classification

Toy example

Classification problem:

c1 c2 c3 class label

a1 − − + A
a2 + − − B
a3 − + + C
a4 + + − B

Monotone classification problem:

c1 c2 c3 evaluation

a1 − − + Bad
a2 + − − Moderate
a3 − + + Good
a4 + + − Moderate
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2. Multi-class classification 2.1. Monotone classification

Toy example

Monotone classification problem:

c1 c2 c3 evaluation

a1 − − + Bad
a2 + − − Moderate
a3 − + + Good
a4 + + − Moderate

a5 − + − Good
a6 + + + Moderate

Research question

How to produce guaranteed monotone classification results, even when
the set of learning examples is not monotone?
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2. Multi-class classification 2.1. Monotone classification

Multi-class classification

Problem: to attach labels from a finite set L to the elements of some
set of objects Ω

Each object a ∈ Ω is represented by a feature vector

a = (c1(a), c2(a), . . . , cn(a))

in the feature space X

Collection of learning examples: multiset

(S, d) ≡ {〈a, d(a)〉 | a ∈ S}

where:

S ⊆ Ω is a given set of objects

d : S → L is the associated decision function

notation: SX = {a | a ∈ S}
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2. Multi-class classification 2.1. Monotone classification

Multi-class classification

Goal of supervised classification algorithms:

extend the function d to Ω in the most reasonable way

concentrate on finding a function λ : X → L that minimizes the
expected loss on an independent set of test examples

Different approaches:

instance-based, such as nearest neighbour methods
model-based, such as classification trees

Distribution classifiers: output is a PMF over L

mathematically: λ̃ : X → F(L)

selecting a single label: Bayesian decision
(label with the highest probability is returned)
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2. Multi-class classification 2.1. Monotone classification

Multi-criteria evaluation

In many cases, L exhibits a natural ordering and could be treated as
an ordinal scale (chain): ordinal classification/regression

Often, objects are described by (true) criteria (ci ,≤ci
) (chains)

The product ordering turns X into a partially ordered set (X ,≤X )
(poset)

Multi-criteria evaluation: quality assessment, environmental data,
social surveys, etc.

Natural monotonicity constraint

An object a that scores at least as good on all criteria as an object b must
be classified (ranked) at least as good as object b
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2. Multi-class classification 2.1. Monotone classification

Monotone classification

Monotone classifier

Classifier + basic monotonicity constraint:

x <X y ⇒ λ(x) ≤L λ(y)

(supervised ranking/ordered sorting, monotone ordinal regression)

Monotone distribution classifier

Distribution classifier + stochastic monotonicity constraint:

x <X y ⇒ λ̃(x) �SD λ̃(y)

(First order) Stochastic Dominance (SD):

fX �SD fY ⇔ FX ≥ FY
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2. Multi-class classification 2.1. Monotone classification

Stochastic dominance

fY fX

FXFY

1
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2. Multi-class classification 2.1. Monotone classification

Selecting a single label

Bayesian decision potentially breaks the desired monotonicity and is
no longer acceptable in this case

The well-known relationship

fX �SD fY ⇒ E[fX ] ≤ E[fY ]

cannot be used as it requires the transformation of the ordinal scale
into a numeric scale

Set of medians (interval) of fX :

med(fX ) = {ℓ ∈ L |P{X ≤ ℓ} ≥ 1/2 ∧ P{X ≥ ℓ} ≥ 1/2}

reduces in the continuous case to the median m

only endpoints of the interval have non-zero probability
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2. Multi-class classification 2.1. Monotone classification

Selecting a single label from the set of medians

The set of medians reduces the PMF to an interval. Does there exist
an ordering on intervals that is compatible with FSD?

[k1, ℓ1] ≤
[2]
L

[k2, ℓ2] ⇔
(

k1 ≤L k2 ∧ ℓ1 ≤L ℓ2

)

New relationship:

fX �SD fY ⇒ med(fX ) ≤
[2]
L

med(fY )

Selecting a single label

1 Pessimistic median (lower)

2 Optimistic median (upper)

3 Midpoint (or smaller/greater of the two midpoints) [not meaningful]

turn a monotone distibution classifier into a monotone classifier
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2. Multi-class classification 2.2. Two simple monotone classifiers

How to label a new point?
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2. Multi-class classification 2.2. Two simple monotone classifiers

Minimal and maximal extensions

1 Minimal Extension: λmin : X → L

assigns best label of “objects below”:

λmin(x) = max{d(s) | s ∈ SX ∧ s ≤X x}

if no such object: λmin(x) = min(L)

2 Maximal Extension: λmax : X → L

assigns worst label of “objects above”:

λmax(x) = min{d(s) | s ∈ SX ∧ x ≤X s}

if no such object: λmax(x) = max(L)

Monotone classifiers

1 λmin and λmax are monotone classifiers

2 Interpolation: midpoint leads to a monotone classifier
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2. Multi-class classification 2.3. Reversed preference

Things can go dead wrong
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2. Multi-class classification 2.3. Reversed preference

A non-monotone data set
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2. Multi-class classification 2.3. Reversed preference

Noise in multi-criteria evaluation

(S, d) is called monotone if for all x and y in S

x = y ⇒ d(x) = d(y)

(absence of doubt/ambiguity)

and

x <X y ⇒ d(x) ≤L d(y)

(absence of reversed preference)

Non-monotonicity defines a symmetric and transitive relation on S

Monotone extensions

If the data set is monotone, then

1 λmin and λmax are monotone extensions of d to X

2 any monotone extension λ of d to X : λmin ≤L λ ≤L λmax
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2. Multi-class classification 2.3. Reversed preference

How to handle noise?

1 Non-invasive approach: keep the data set as is

excludes the use of some monotone classification algorithms
(such as TOMASO)

restricts the accuracy of any monotone classifier
(independence number)

2 Data set reduction: identify the noisy objects and delete them

3 Data set relabelling: identify the noisy objects and relabel them
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2. Multi-class classification 2.3. Reversed preference

A non-monotone data set
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2. Multi-class classification 2.3. Reversed preference

A non-monotone data set
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2. Multi-class classification 2.3. Reversed preference

The maximum independent set problem

The non-monotonicity relation corresponds to a comparability graph:

A monotone subset corresponds to an independent set of this graph

Maximal independent set = independent set that is not a subset of
any other independent set

Maximum independent set = independent set of biggest cardinality
(= independence number α)

A maximum independent set in a comparability graph can be
determined using network flow theory (cubic time complexity)

Let (S ′, d) be a maximal independent set. For x /∈ S ′, it holds that

d(x) <L λmin(x) ≤L λmax(x) or λmin(x) ≤L λmax(x) < d(x)
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2. Multi-class classification 2.3. Reversed preference

Which maximum independent set to select?
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2. Multi-class classification 2.3. Reversed preference

Which maximum independent set to select?
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2. Multi-class classification 2.3. Reversed preference

Relabelling options

Universal tool: weighted maximum independent set problems and
network flow theory

1 Optimal ordinal relabelling: relabelling a minimum number of
objects, of which all corona objects are relabelled to a minimum
extent

2 Optimal cardinal relabelling (identifying L with the first n
integers): minimal relabelling loss

zero-one loss: maximum independent set
broad class of loss functions, including L1 loss and squared loss

3 Optimal hierarchical cardinal relabelling (single pass):

minimizing loss while relabelling a minimal number of objects
relabelling a minimal number of objects while minimizing loss
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2. Multi-class classification 2.4. Two simple monotone distribution classifiers

Distribution representation of a data set

Collection of learning examples (S, d)

For each x ∈ SX , a CDF F̂ (x, ·) : L → [0, 1] is built from the

collection of learning examples

F̂ (x, ℓ) =
|{a ∈ S | a = x ∧ d(a) ≤L ℓ}|

|{a ∈ S | a = x}|

(cumulative relative frequency distribution)

The distribution data set (SX , F̂ )
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2. Multi-class classification 2.4. Two simple monotone distribution classifiers

A distribution data set
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2. Multi-class classification 2.4. Two simple monotone distribution classifiers

Stochastic minimal and maximal extensions

1 Minimal Extension: Fmin : X × L → [0, 1]

Fmin(x, ℓ) = min{F̂ (s, ℓ) | s ∈ SX ∧ s ≤X x}

if no such object: fmin(x, min(L)) = 1

2 Maximal Extension: Fmax : X × L → [0, 1]

Fmax(x, ℓ) = max{F̂ (s, ℓ) | s ∈ SX ∧ x ≤X s}

if no such object: fmax(x, max(L)) = 1

Monotone distribution classifiers

1 Fmin and Fmax are monotone distribution classifiers

2 Interpolation: for any S ∈ [0, 1], the mapping

F̃ = S Fmin + (1 − S)Fmax

is also a monotone distribution classifier
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2. Multi-class classification 2.5. Reversed preference revisited

Monotone distribution data sets

(SX , F̂ ) is called monotone if for all x and y in SX

x <X y ⇒ F̂ (x, ·) �SD F̂ (y, ·)

Reversed preference:

x <X y while not F̂ (x, ·) �SD F̂ (y, ·)

Monotone extensions

If the distribution data set is monotone, then

1 Fmin and Fmax are monotone extensions of F̂ to X

2 any monotone extension F of d to X :

Fmin(y, ·) �SD F (y, ·) �SD Fmax(y, ·)
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2. Multi-class classification 2.5. Reversed preference revisited

A non-monotone distribution data set
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2. Multi-class classification 2.5. Reversed preference revisited

How to handle noise?

1 Non-invasive approach: keep the data set as is

2 Data set reduction: identify the noisy distributions and delete them

the non-monotonicity relation is not transitive (maximum independent
set problem is NP-complete)

deleting entire distributions is quite invasive

deleting a single object affects the entire distribution and is hard to
realize

3 Data set relabelling:

transitivity of non-monotonicity still holds at the label level

L1-optimal relabelling is possible using network flow algorithms

does not affect the frequency of feature vectors
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2. Multi-class classification 2.5. Reversed preference revisited

After relabelling: a monotone distribution data set
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2. Multi-class classification 2.6. The Ordinal Stochastic Dominance Learner

A non-invasive approach

Aim: to build a monotone distribution classifier from a possibly
non-monotone distribution data set

Weighted sums of Fmin and Fmax are solutions to this problem

Aim: to identify more general interpolation schemes, depending on
both the element x and the label ℓ

For given x and ℓ:

monotone situation: Fmin(x, ℓ) ≥ Fmax(x, ℓ)

reversed preference situation: Fmin(x, ℓ) < Fmax(x, ℓ)
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2. Multi-class classification 2.6. The Ordinal Stochastic Dominance Learner

The main theorem

OSDL generic theorem

Given two X × L → [0, 1] mappings s and t, the mapping
F̃ : X × L → [0, 1]

F̃ (x, ℓ) =























s(x, ℓ)Fmin(x, ℓ) +
(

1 − s(x, ℓ)
)

Fmax(x, ℓ)

if Fmin(x, ℓ) ≥ Fmax(x, ℓ)

t(x, ℓ)Fmin(x, ℓ) +
(

1 − t(x, ℓ)
)

Fmax(x, ℓ)

if Fmin(x, ℓ) < Fmax(x, ℓ)

is a monotone distribution classifier if and only if

1 s is decreasing in 1st and increasing in 2nd argument

2 t is increasing in 1st and decreasing in 2nd argument
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2. Multi-class classification 2.6. The Ordinal Stochastic Dominance Learner

Realization 1: OSDL

If one does not want to distinguish between the monotone and the
reversed preference situation (s and t are identical), then the simple
interpolation scheme is the only one

OSDL

If s(x, ℓ) = t(x, ℓ) for all x and ℓ, then

s(x, ℓ) = t(x, ℓ) = S

for some constant S ∈ [0, 1]
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2. Multi-class classification 2.6. The Ordinal Stochastic Dominance Learner

Measuring support

1 The mapping Nmin : X ×L → N:

Nmin(x, ℓ) = |{〈y, d(y)〉 ∈ (S, d) | y ≤X x ∧ d(y) >L ℓ}|

counts the number of instances that indicate that x should receive a
label strictly greater than ℓ

2 The mapping Nmax : X × L → N:

Nmax(x, ℓ) = |{〈y, d(y)〉 ∈ (S, d) | x ≤X y ∧ d(y) ≤L ℓ}|

counts the number of instances that indicate that x should receive a
label at most ℓ

3 Both are strictly positive in the reversed preference situation
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2. Multi-class classification 2.6. The Ordinal Stochastic Dominance Learner

Realizations 2 and 3: one parameter S ∈ [0, 1]

Balanced OSDL

1 s(x, ℓ) = S

2 t(x, ℓ) =
Nmin(x, ℓ)

Nmin(x, ℓ) + Nmax(x, ℓ)

Double-balanced OSDL

1 s(x, ℓ) =







Nmax(x, ℓ)

Nmin(x, ℓ) + Nmax(x, ℓ)
if Nmin(x, ℓ) + Nmax(x, ℓ) 6= 0

S otherwise

2 t(x, ℓ) =
Nmin(x, ℓ)

Nmin(x, ℓ) + Nmax(x, ℓ)
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2. Multi-class classification 2.7. Ranking trees

Towards ranking trees

c1 c2 c3 class label

a1 − − + Bad
a2 + − − Moderate
a3 − + + Good
a4 + + − Moderate
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2. Multi-class classification 2.7. Ranking trees

Towards ranking trees

c1 c2 c3 class label

a1 − − + Bad
a2 + − − Moderate
a3 − + + Good
a4 + + − Moderate
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2. Multi-class classification 2.7. Ranking trees

Basic principles

Growing principle: strive for purity by minimizing solvable doubt
and reversed preference

Interdependence of the leaves due to monotonicity:
split of one leaf may have an effect on all the other leaves

Pruning: theory of minimal cost-complexity pruning collapses

Labelling rule: poset structure on the leaves allows for the use of
OSDL as labelling rule
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2. Multi-class classification 2.8. References

Topics not discussed

Other approaches to monotone classification

Experimental comparison

Performance measures

Random generation of monotone data sets
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2. Multi-class classification 2.8. References
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2. Multi-class classification 2.8. References
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3. Decision making
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3. Decision making 3.1 Problem statement

The Lar region in Iran

Lar region in Iran

75 km north-east of Tehran

Ecological, economical and
socio-cultural value

Flora and fauna
Water supply
Extensive stock farming
Tourism
Nomads

Region under heavy
ecological pressure
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3. Decision making 3.1 Problem statement

Management of the region

Four proposed management plans involving 12 criteria

For each of the 12 criteria, each of the 31 stakeholders

defines a linear order on the 4 plans
expresses how strongly (s)he prefers one plan over another:
intensities ranging from very weak to very strong

Overall problem: establish a linear order on the 4 plans

Subproblems: for each of the 12 criteria establish

social order: linear order on the 4 plans
(social choice problem)
social intensities of preferences: express how strongly one plan is
preferred over another

Solution procedure: translate into a monotonicity problem
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3. Decision making 3.1 Problem statement

Data representation

A set S of N stakeholders

A set A of k alternatives

An ordinal scale L of m intensities of preference: ℓ1 < · · · < ℓm

Each stakeholder Si delivers:

a linear order ≻i on A
a mapping Pi :≻i→ L assigning intensities to couples of alternatives

consistency in the form of monotonicity conditions:

Pi is increasing (w.r.t. ≻i) in its first argument
Pi is decreasing (w.r.t. ≻i) in its second argument
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3. Decision making 3.1 Problem statement

Example: data of stakeholder Si

Linear order of Si : a ≻i b ≻i c ≻i d

Intensities of preferences Pi :

a b c d

a strong strong strong

b weak strong

c moderate

d
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3. Decision making 3.1 Problem statement

Extended representation

We extend the ordinal scale L to the ordinal scale

L∗ = {−ℓm, . . . ,−ℓ1, ℓ0, ℓ1, . . . , ℓm}

containing:

signed intensities of preferences
zero intensity of preference ℓ0

We extend Pi to P ′
i : A×A → L∗ as follows:

if a ≻i b, then P ′
i (a, b) = Pi (a, b) and

P ′
i (b, a) = −Pi (a, b)

P ′
i (a, a) = ℓ0

Notation: ℓ−i := −ℓi
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3. Decision making 3.1 Problem statement

Example revisited

Linear order of Si : a ≻i b ≻i c ≻i d

Intensities of preferences P ′
i :

a b c d

a none strong strong strong

b −strong none weak strong

c −strong −weak none moderate

d −strong −strong −moderate none
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3. Decision making 3.1 Problem statement

Poset representation

Linear order of Si : a ≻i b ≻i c ≻i d
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3. Decision making 3.1 Problem statement

Poset representation with intensities

Linear order of Si : a ≻i b ≻i c ≻i d
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3. Decision making 3.1 Problem statement

Poset representation with intensities

Linear order of Sj : a ≻j b ≻j d ≻j c
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3. Decision making 3.1 Problem statement

Poset representation with intensities

Intensities of preferences of Sj on the poset of Si :
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3. Decision making 3.1 Problem statement

Poset representation with distribution of intensities

F(a,b)(ℓi ) = number of times the intensity for a ≻ b is at most ℓi
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3. Decision making 3.1 Problem statement

Social order and social intensities of preferences

Suppose a social order has been selected

Optimistic or pessimistic median intensities (upper half)

not necessarily increasing

not necessarily positive

Case of stochastic monotonicity (upper half)

Medians are

increasing

not necessarily positive
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3. Decision making 3.2. Solution of the problem

Classical majorities

Interpretation:

F(a,b)(ℓ0) is the number of stakeholders against a ≻ b

F(b,a)(ℓ0) is the number of stakeholders in favour of a ≻ b

F(a,b)(ℓ0) + F(b,a)(ℓ0) = N

Classical majority a �M b: F(a,b)(ℓ0) ≤ F(b,a)(ℓ0)
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3. Decision making 3.2. Solution of the problem

Condorcet order

Condorcet majority cycle:

if a ≻M b and b ≻M c , but c ≻M a

If a ≻M b, b ≻M c and a ≻M c :

Condorcet order a ≻M b ≻M c

it may hold that a ≻M c received the weakest support

In case of a Condorcet order

Medians are

positive

not necessarily increasing (and hence no stochastic monotonicity)
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3. Decision making 3.2. Solution of the problem

Optimization problem

For any linear order ≻ on A, we determine G such that:

1 it generates cumulative frequency distributions:

for any (a, b), G(a,b) is increasing and G(a,b)(ℓm) = N

2 it preserves symmetry: G(b,a)(ℓ−i ) = N − G(a,b)(ℓi−1)

3 it renders ≻ a Condorcet order:
for any a ≻ b it holds that G(a,b)(ℓ0) ≤ G(b,a)(ℓ0)

4 it generates stochastically monotone distributions

5 it is as close as possible to F , i.e. it has minimal error

d(F , G) =
∑

a,b∈A

∑

ℓ∈L

∣

∣F(a,b)(ℓ) − G(a,b)(ℓ)
∣

∣

(implicitly assumes L1-distance on L)

Social order: linear order ≻ for which d(F ,G ) is minimal
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3. Decision making 3.2. Solution of the problem

Optimization problem

The optimization problem can be translated into a weighted
maximum independent set problem

Using an intelligent scheme, it can be solved efficiently using nearest
and farthest maximum cuts in flow networks

In case of a Condorcet order

If the Condorcet order is not stochastically monotone, then

there does not exist a stochastically monotone linear order

it is not necessarily optimal
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3. Decision making 3.3. Illustrations

Illustration

Condorcet order a ≻M b ≻M c
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3. Decision making 3.3. Illustrations

Real-life example: the Wildlife criterion in Lar

Condorcet order a ≻M b ≻M c ≻M d
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3. Decision making 3.3. Illustrations
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3. Decision making 3.3. Illustrations

Discussion

Transparent methodology:

it builds distributions before taking the median
(credo: “first process the data, then defuzzify”)

it does so in an optimal way

it allows to simulate the effect of the inclusion/exclusion of minorities
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3. Decision making 3.4. Voting

A new social choice function

Reduced setting:

each stakeholder Si delivers only a linear order ≻i , no intensities of
preferences
intensity ℓ1: vote in favour
intensity ℓ−1: vote against

Social order: linear order for which a minimum number of
preferences needs to be reversed

In case of a Condorcet order

If the Condorcet order is not monotone, then

there does not exist a monotone linear order

it is not necessarily optimal
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3. Decision making 3.4. Voting

A final example: a non-optimal Condorcet order

Condorcet order: a ≻ b ≻ c ≻ d
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3. Decision making 3.4. Voting

A final example: a non-optimal Condorcet order
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3. Decision making 3.4. Voting

A final example: a non-optimal Condorcet order

Condorcet order: b ≻ a ≻ c ≻ d
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3. Decision making 3.4. Voting

A final example: a non-optimal Condorcet order

Condorcet order: b ≻ a ≻ c ≻ d
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3. Decision making 3.4. Voting
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3. Decision making 3.4. Voting

Closing observations

1 In many modelling problems, there exists a monotone relationship
between some of the input variables and the output variable

2 Resolution of non-monotonicity can be translated into an
optimization problem

3 The key lies in a cumulative approach and network flow theory

4 Group decision making problems can be cast in this framework

5 A new avenue of research
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3. Decision making 3.4. Voting

Thank you for your attention!

bernard.debaets@ugent.be
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