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Motivations for this talk

There is no part of human activities left untouched by
both the need for and the desire to collect data today

The consequences are - we are surrounded by, In
fact, we are immersed in an ocean of all kinds of
data (a.k.a. measurements, images, patterns, sounds,
samples, web pages, tunes, x-rays or ct images, etc.)

Humans can't handle ultra-large data sets but,

we must develop algorithms able to learn from
such datasets and to mine them efficiently
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1st, let’s clarify the talk’s title
What is an ultra-large dataset?

A concept of size is continuously changing with
both data producing capacities and advances In
hardware, but let’s define it (for today only):

SMALL < ~ 10,000 samples
MEDIUM < ~ 100,000 samples
LARGE upto ~ 1million samples

ULTRA-LARGE = 'LARGER’ than LARGE

However, remind that the training doesn’t depend upon the size of
data only. We’ll see that some medium datasets are much tougher
nuts to crack than some ultralarge samples collections!!! 3/79



10" Distribution of the dataset sizes on UCI repository site
8¢

Number of
Samples @
7 ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
6
5 ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
o

LARGE SE

MEDIUM SETS
4 ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

MEDIUM 8E_

20 40 60 80 100 120 =
Status as of Nov 2011
4/79



10

Number of
Samples

10

5

4
10

10

2
10

1
10

Distribution of the dataset sizes on LIBSVM data site

i (o] O00
- o ° o .
R LARGE . SETS
= ——=
- 0000, .
m% MEDIUM SETS
L Oo o ° 000 i
ﬁ
- o o) (o)
N (o) (o)

a o o |
- A Q
- o SMALL 1 SETS
R (o)
0 10 20 30 40 50 60

Status as of Nov 2011

5/79



Legs Wings Fur Feathers

cat 4 no yes no
crow 2 yes no yes
frog 4 no no no
bat 4 yes yes no
barstool 3 no no no
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Single Algorithms only, not
Ensemblings today

We are discussing single algorithms (i.e.,
approaches, methods) and

not ensemble methods, such as bagging,
boosting, committee of trees, random forest
and/or nonlinear ensemble approaches,

which all have been proposed to improve
performance of single models (NNs, SVMs, linear
models, trees, etc ...) to get a STRONG classifier

by combining multiple of weak (base) classifiers
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Living in an ocean of data produced on daily basis what
can, must, should humans do, right now?

a) stop collecting them
b) keep collecting the data and save them for future use
c) collect them and analyze whatever you can right now &

—avoid in this way drowning in data, while starving for knowledge —
SOME TOPICS today

- Basic Model of Computational Intelligence
(i.e., Machine Learning, i.e., Data Mining) is:

@of Weighted Bas@

- One model == Many (almost all the) models

-- LARGE DATA SETS & Some Contemporary Tools:
—New Hardware (GP GPUs) & New (Geometric) Approaches__ -




Let’s first set the stage
there are three (3) machine learning (ML) settings

This talk is all about the
supervised learning

Semi-supervised
e ©

y:_l ‘y:‘|‘1
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Supervised Learning is concerned by
solving two (out of three) classic
statistics problems:

Classification (Pattern@

Regression (Curve, Surface, Fitting,
l.e., Function Approximation)

one more statistics’ problem, we will not be discussing

here, is the Density Estimation Problem
11/79



Today, we’ll discuss classification i.e., pattern recognition, only

Training Phase:

W = g(X, y)
class label w.=y;,

This stage i@

CPU time
expensive one

Test, i.e.
Application, Phase:

i = @;=f(x;, W)
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Classifying in 2 features space, we see the decision function.
When # of features > 2, we deal with HYPER-surfaces, that can’t be seen.
However, the algorithms ‘see’ in high-dim spaces and they will be the same.

Input space of features

Desired value y

Feature B

B e e e e

ﬁ’
Feature A

A linear model is same for any-dim case

Linear decision function

y= Xw

13/79



Separation curve (SC) obtained by Gaussian RBF - redso.d, Margins - blue, Unknown SC yell

VERY OFTEN the decision .© |
function and separating :° . |
boundary are |
NONLINEAR |
NL SVM decisio.rj. fgnction , r r r N r r r
o~ 04
Featurs 2, p.e.. Input x, Feature 1, i.e., Input H 14/79



Such complex decision functions
can be realized by many models,
notably polynomial approximations,
NNs, SVMs, decision trees, etc ...

What are then the DIFFERENCES
and/or possibly SIMILARITIES
between these VARIOUSLY
NAMED ML TOOLS?

15/79



Some connections of

classic techniques such as Fourier
series & Polynomial approximations

with
NNs or7and SVMs

16/79



Classic approximation techniques in NN graphical appearance
FOURIER SERIES
AMPLITUDES and PHASES of sine (cosine) waves are unknown,
but frequencies are known because
Mr. Joseph Fourier has selected frequencies for us -> they are

INTEGER multiplies of some pre-selected base frequency.

And the problem is LINEAR!!!% W

It is ‘'same’

with POLYNO

BUT, what if we want to
learn the frequencies?

111  NONLINEAR
LEARNING PROBLEM !!!

N +1
F(x) = > aSin(kx), or bcos(kx), or both
k=1 17179



Another classic approximation scheme is a

POLYNOMIAL SERIES
F(x) Ziwixi

vV
is prescribed

With the prescribed
(integer) exponents
this is again a LINEAR

APPROXIMATION ,
SCHEME. Linear in
terms of parameters to
learn and not in terms
of the resulting
approximation
function. F(x) is NL
function for i > 1.
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The two ‘novel’ learning machines in regression
..., In classification (pattern recognition) are

SVMs or NNs

(however remember, there are other models too).

WHAT are DIFFERENCES and SIMILARITIES?
WHATCH CAREFULLY NOW I!!
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This is a Neural Network,




and, this is a Support Vector Machine.

AND AGAIN !

21/79



This is a Neural Network,




and, this is a Support Vector Machine.

~~

There isno.differenc

~~
~~

in a structure i.e., in
0 representational capacity.
However, there is an important

+1 | difference in LEARNING. 2379




Where then the
BASIC DIFFERENCES between
NNs and SVMs

(in fact among all the other various ML models)

are coming from?



Well ! There are two fundamental
pieces in any ML modeling

* They are the questions of:
* the FORM
and

e the NORM

25/79



FORM

» covers — the type of the model and in particular
the type of the kernel (SVM), i.e., activation
(NN), i.e., basis (RBF), i.e., membership (FL)
function used

NORM

» covers — the type of the cost, i.e., merit, i.e.,
loss, I.e., fithess, i.e., objective, function which
is minimized over the parameters of interest
(here, we call them weights)

26/79



FORM

* ‘All’ our models in ML are 'same’ i.e. they are the

SUM OF THE WEIGHTED BASIS FUNCTIONS

o= fEy- > AT

Hyperparameters to be found dughg
the learning (training) phas

ONE MODEL = MANY MODE

Polynomial approximations, Fourier expansions, NN, SVMs, wavelfs, JPEG,
MPEG, Fuzzy Logic models, ..., many others ... they ALL are

Hence,

27179



NORM

- Basically, we use primarily (only) two NORMs (cost
functions) in ML which are the

 MINIMIZATION of the SUM OF ERROR SQUARES in
the OUTPUT space (linear standard classifier, FFT,
JPEG, MPEG, MLP NN and RBF NN) — L, norm

and the

« MAXIMIZATION of the MARGIN in the INPUT space
expressed as a MINIMIZATION of the SUM OF
WEIGHTS SQUARES (SVMs)

(a variant of both may be the L, norm or some composite norm)

28/79
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Norms (Loss Functions) of NNs and SVMs
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In the last expression the SRM principle uses the VC dimension h
(defining model capacity) as a controlling parameter for minimizing E
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SUPPORT VECTOR MACHINE

is a MAXIMAL MARGIN CLASSIFIER which

* creates separating hyperplane with the maximal geometric margin

- WHY maximal margin?

Consider two linearly separable classes below. Two perfect separation
boundaries of two different decision functions are shown

X; Small X5
marg'in /,7" Class 1,y = +1
o7 l® ()
@
@ O
@
@

Class 2,y = -1 N

N

e

~

Class 2,y =

] © ~< Separating lines, i.eK.,,/’

boundaries, i.e.,
‘hyperplanes’

:x]

Class 1,y = +1

> X;

Thus, the larger the margin, the smaller the probability of misclassification!
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A gentle SVMs history graph from the ‘'simple’ linear case to the

more complex ones!

Linear Maximal Margin Classifier for Linearly e O
Separable Data - no samples overlapping O

(late 1960-ties and early 70-ties). O N

Vapnik & Chervonenkis

Boser & Gyon & Vapnik

Nonlinear Classifier (1992)
O

Cortes & Vapnik

(19995)

Linear Soft Margin Classifier

for Overlapping Classes. O

Regression by SV Machines that
can be both linear and nonlinear!

(1996)

Drucker & Burges & Kaufman,& Smola & Vapnik
31/79



The margin will be maximized by solving QP problem

minimize
Margin T 2 7 38D 2
J=w'w = || w||*= wetwct+ v,
maximization!
subject to constraints
Correct :
yiw'x.+b]>1, i=1,n
classification! Note that # of constraining inequalities = # of training data /

This classic QP problem with constraints ends in
forming and solving a primal and dual Lagrangian

Dual Lagrangians for both (regression and
classification) are given on the next slide



SVMs Linear Classification Learning (Training) Setting

N N N
: __1 T —
Dual Problem: Ly=—7 o;a;y;y |X; X |+ > a; = max
st. 0<g;<C for i=1,...,.N
N
2.2;y; =0
i=1

SVMs Linear Regression Learning (Training) Setting

N N N N
Dual Ly=-1>2(a;-af Na, -] —eX (o +a;)+ 2 (e —a;) y; = max
Problem: i=17=1 = =l ’
st. 0<aq,,a <C for i=1,...,.N
N %
Z(ai_ai)_o/
i=1

o, in.a matrix L ((l) T b (ITK(I il fT(l which has the
notation d 2

N CZZ-)/:./\' classification
final solutions as: X = g b
i=1 | &; — O, regression

\/ 33/79




Nonlinear SVMs

v
b

?5(x)

Mapping Linear SVM

Kernel-Function:  k(x,y) = @' (x)-D(y)

New at NL SVM: < Scalar product is replaced by the Kernel-Function.
« Kernel-Function is usually positive definite.

» Support Vectors Representation of an NL SVM is:

. /\

S
classification
ai y I

N
J(X) =25 it +b
=1 k0[1. —VOZZ\J/- regression
34/79




Some SVMs’ constructive problems

i) Kernel (Hessian) matrix K is both DENSE & VERY badly conditioned, but
ii) in a batch mode, SVM training may work fine for not too large datasets.

However, with the number of data points increasing (say N > 5,000) the
difficulties with a standard (batch) method show up.

A training set of 50,000 examples amounts to a kernel (Hessian) matrix K
with 2.5*10° (2.5 billion) elements. Using an 8-byte floating-point
representation we need 20,000 Megabytes = 20 Gigabytes of memory while
1 million examples asks for 8 Terrabytes of memory for storing K. This
cannot be fit into memory of present standard computers.

The way to go is a DECOMPOSITION

 Vapnik (1995) proposed the chunking method

» Osuna, Girosi (1997) present another efficient decomposition method.

Platt (1997) proposed the sequential minimal optimization (SMO) (it works with
2 data points at the time) which became the working horse of SVM learning.

The newest lterative Single Data Algorithm (ISDA) - Kecman, Vogt, Huang,
2003; Huang, Kecman, 2004 - seems to be the fastest for a huge data sets at

the moment — check: Yottamine.com SErh



Problem Size & QP Solving Algorithms*

Original training of SVM is not scalable !?!
* QP solving needs O(n?) time and O(n?) memory

Size of the Problem

2 el 380N

small medium huge
Memory ~ N? Memory ~ Néyecs Memory ~ N
Interior Point Active Set Working Set
Gradient Projection

* Graph by M. Vogt 36/79



Solving the SVM QP-Problems
Matrix formulation: maximize Ld (a) — —%(ITK(I +fla

subjectto 1) OSOti,O(i*SC, =1, ..
and 2) 1 equality constraint if working with bias b

Various Solution Methods Possible:

— Interior-Point: precise, batch, not suitable for huge data sets.
— Active-Set: robust, precise, maybe slow (?), memory prop. to the # of SVecs.
— Working-Set for huge data sets, iterative (chunking), SMO or ISDA -> now

implemented on the Yottamine.com site)

Available Software:

— Interior-Point: universal-routines LOQO, CPLEX, MOSEK, MATLAB’s QP solver, ...
— Working-Set: implemented in SVM!''9" mySVM, SVMTorch, (Hero-SVMs?) ...

SMO, 2 datapoints only, implemented in LibSVM software

ISDA, 1 datapoint only (our algorithm implemented on

Yottamine.com cloud) 37/79



Recapitulations till now:

* ‘All' ML models are of the same form i.e.,
they are ——> Sum-of-Weighted-Functions

* The most used ones minimize either sum-
of-error-squares, or maximize the margin
between classes

* The later ones are the most suitable for
LARGE data sets (we'll comment this
soon) and their learning amounts to
Solving QP Problem with Constraints

38/79



Finally, we have arrived at the
LARGE DATA SETS!

How to handle them?
What algorithm is suitable?
What hardware i.e. software
solution fits them the best?

39/79



As of today, SVMs only can successfully deal
with (ULTRA)LARGE Datasets. SVMs only!

Sorry for such a bold claim, but the explanations below may help to understand it!

How comes? What about the other ML models? Why
IS it this way?

Well, it follows from the SVMSs’ learning algorithm
which is solving the QP problem with N inequality
constraints and 1 equality constraint, where the
former

IMPOSE the SPARSENESS ONTO THE SOLUTION!

This then in turn, makes the training phase
feasible and expresses the model in terms of a

small number of the so-called Support Vectors!
40/79



There are few possibilities to learn
from ultra-large data sets by SVMs

* parallelize the existing QP solvers
** implement ‘novel’ parallel QP solvers
*** use GPUs i.e., manycore machines

****change the SVMs algorithm through
a ‘novel geometry based insights =
hulls and spheres (balls) approaches

41/79



Classic Parallelization

* There was a series of various attempts to
parallelize SVMs algorithms on super-
computers, clusters and grid machines starting
from ~ 2003 and lasting till today.

» Table of examples is on the next 2 slides

the NEC Labs’ patented cascade SVM
parallelization approach (Graf et al &
Vapnik, 2000) is not forgotten in the next
table - check it at NIPS 2004. It belongs to
the item *parallelize the existing QP solvers,
from previous slide)

42/79



2003, Zanni

2005, Serafini and
Zanni

2006, Cao et al.

2006, Serafini and
Zanni

2007, Chu et al.

2007, Dominik
Burgger

Processor
VPDT
L variable projection
(Cray T3E, 32
’ decomposition
processor) .
technique
PGPDT
A Parallel Gradient
Projection-based
Cluster Decomposition
Technique for
Support Vector
Machines
MPI
(Cluster of multiple Par:IISe“InS?M 0
CPUs)
PGPDT
A Parallel Gradient
Projection-based
Cluster Decomposition
Technique for
Support Vector
Machines
Cluster (Map-
Reduce) Ll
Kepler Cluster
(Every node has nSYM
two cores) Extension of
LIBSVM

(MPI)

Training

Speed up

1.8 -6.1
(2 - 16 processor)

5.2
(8 processor/ single
processor)

93 (over SVM and
LIBSVM)
(32 Processor)

7.3 MNIST
12.8 Cover test

(16 processor / single

processor)
2 - 25 KDDCUP
(24 - 32 processor/
single processor)

1.6 - 1.96
(2 core/1 core)

3.8-16
(LIBSVM)

Testing
Speed up

N/A

N/A

N/A

N/A

N/A

N/A
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Processor

Algorithm

Training

Speed up

Testing
Speed up

2008 , Thanh-Nghi
Do et al.

Nvidia GeForce
8800 GTX

Nvidia GeForce

2008, Catanzaro et 8800 GTX

LS-SVM
Extended Least
Squares SVM

al. GPU, single it
precision
2009. Carpenter NVIDIA GTX 260 SMO(
, Carp GPU ?égg .@é“
2009, Harvey 2 GPU \‘90\ e\GQSVM
N
3(06 e O DSVM
‘.’e \l (Distributed SVM)
: R\" Grum\ PSVM
2009, Meligy
\ﬁ d MPI) (parallel of Support
“0 C Vector Sector
« 00 Machine)
\“
% Hybrid OOPS
2009, Woodsend MPI/OpenMP (Object-Oriented

Cluster (quad-core)

NVIDIA Tesla C1060

AU, H G GeForce 8800 GT

Parallel Solver)

P2SMO
Parallel-Parallel
SMO

47 - 100
(over LIBSVM on
CPU)

9-35 (GPU Adaptn@o’\‘
Ove 6

over LIB
81- 135

(GP

17 32 (over
LIBSVM)

89 - 263
(LIBSVM)

not implemented

2.2 - 2066 (Milde)
43 - 125 (PSVM)
94 - 206 (PGPDT)

3 - 57 (Training)
3-112
(Classification)

N/A
&
N/A

22-172 (normal

CPU)

N/A

N/A

N/A

N/A
14/79



SVMs code on GPUs
developed at VCU

- Tesla card S1060 (first series)

8 Tesla GPUs in 4U server

45/79



GPUSVM Experimental Results for Benchmark Datasets

» Performance comparisons between LIBSVM and GPUSVM
on both accuracy and speed will be shown on next 8 slides.

- Accuracy comparison:
— Small datasets: Accuracies are shown for training sets.

— Medium datasets: Accuracies are shown for both training and
testing sets.

— Large datasets: Accuracies are shown for testing sets.

« Speed comparison:
— Small datasets: The training time is too trivial to be shown.

— Medium/Large datasets: The training /testing time are shown for

standard | IBSVM ( usina Xeon 1-core) OnenMP enabled 46/79



GPUSVM Benchmark Datasets for
Hyperparameters C and )/

Scale Dataset # of training # of # of "5
data features classes 7/

iris 150 N/A 4 3 16 0.5
heart 270 N/A 13 2 0.5 0.0625
breast- 683 N/A 10 2 0.25 0.125

cancer

7,291 0.015625

usps

shuttle 43,500

mnist 60,000 0.003096

500,000

covtype



GPUSVM & LIBSVM Accuracy Performance Comparisons

Small datasets

Training # of
accuracy SVs

Dataset SVM

98.1308%

GPUSVM

GPUSVM

GPUSVM 99.4383%

85.1852%

GPUSVM

GPUSVM

97.2182%

GPUSVM

Medium datasets

Dataset

SVM

GPUSVM

GPUSVM

GPUSVM

GPUSVM

GPUSVM

GPUSVM

Training
accuracy

85.7928%

99.9863%

99.8467%

99.4736%

99.4553%

99.4617%

Testing
accuracy

85.0193%

95.715%

97.38%

99.5655%

99.4515%

98.27%

# of
SVs

11587

1923

11936

3667

35220

12919
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GPUSVM &LIBSVM Accuracy Performance Comparisons

Large datasets

Dataset SVM # of SVs

GPUSVM 99.2332%

GPUSVM 80.3362% 267373

GPUSVM

98.037%

49/79



GPUSVM & LIBSVM Performance Comparisons

Medium datasets

Dataset SVM Processor Training time Speedup

Xeon 12-core 6.7386x

Xeon 1-core 4.901s 1x 2.113s 1x
ot g
7,291
GPUSVM Tesla C2070 2.158s 2.2711x 0.081s 26.0864x

Xeon 12-core 11.902s 3.1712x

Xeon 1-core 9.379s 1x 2.402s 1x
shoalditener - -
43.500

GPUSVM Tesla C2070 2.238s 4.1908x 0.526s 4.5665x

Xeon 12-core 199.784s 7.2625x 6.819s 8.6931x

Xeon 1-core 256.579s 1x 86.559s 1x

Mnist LIBSVM
50,000 e

GPUSVM Tesla C2070 39.552s 6.4871x 1.124s 77.0098x 50/79



GPUSVM & LIBSVM Performance Comparisons

Large datasets

Dataset SVM Processor Training time Speedup

Xeon 12-core 66.4m

Xeon 1-core 1347.7m 1x 198m 1x

Covtype  LIBSVM
500,000

GPUSVM TeslaC2070 19.4m

Xeon 12-core 286.5m

51/79



Graph for training time comparisons
between GPUSVM and LIBSVM
Large datasets

Note the logarithmic scale here. Thus, we are talking about the ORDER OF MAGNITUDES SPEED UP.

time cost (minutes)

10t

—_
=
e
T

—_
=
[
T

—_
]

10

| I GrPUSYM (Tesla C2070)
F | = LiBsvM (xeon 12-core)
| I e (eon 1-core)

i

Usps-ext

coviype

face-ext
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GPUSVM & LIBSVM Performance Comparison Summary

« Accuracy performance comparisons:

— GPUSVM is as accurate as LIBSVM. Both use same working
set technique (SMO) for solving QP problems.

— GPUSVM uses single precision floating point and LIBSVM uses
double precision floating point. (This causes the slight difference
between the total number of support vectors acquired through
the learning phase and their corresponding alpha values. No
effects on the accuracy whatsoever!)

— GPUSVM uses OvA for multiclass problems while LIBSVM uses
OvO. This also causes a tiny accuracy performance differences.

« Speed performance comparisons:

— LIBSVM can be accelerated by enabling the built-in OpenMP
feature which utilizes the full power of multi-core CPU.

— GPUSVM has close performance on medium datasets
compared to LIBSVM with OpenMP in training phase. However,
GPUSVM is alwavs faster than OpenMP enabled LIBSVM in 2379



Now, let's move from the
accelerations based
primarily on hardware to the
speeding up by a ‘new’,
geometry inspired,
algorithm(s) i.e., software



T SE A S oS e
—— 22 movre slides to go ——

| am enjoying it ) HIL nows
wndeed !
What abowt yow ?

55/79



The 'novel’ approaches,
seemingly promising for
(ultra)large datasets, are
based on geometric
Insights disguised In the
shapes of hulls and
spheres (balls)



SVM - Geometric Approaches

« Convex Hulls
« Core (Ball) Vector Machines
« Sphere Vector Machines

We've played with hulls,
and we abandoned them for
now, but the basic idea is



-find two closest points belonging to the
two Convex Hulls

SVMs as the Reduced Convex Hulls



Reduced Convex Hulls

*Can be solved using existing algorithms:

— Closest Point Problem
Gilbert's algorithm

— Nearest Point Problem

*Mitchell-Dem'yanov-Malozemov
Schlesinger-Kozinec

eNon-separable problems can be solved using

Reduced Convex Hulls
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Core i.e., Ball, Vector Machines

*Solving minimal enclosing ball problem

s D2 ‘
arg min R Ville — @(xi)Hg < R2

R.,c

*is equivalent to solving a modified L2 SVM

1 Yiuy;(wx; +b) = p— (
arg min ~ ||w]|? +——[)+—ZC yil ) 2P =G
w.b.C 2 \?’;C;;ZO

*in a feature space defined by kernel

N Oy j
kij = iy k(Xi, X;) + Ff T YiYj
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Core Vector Machines

At each iteration:

- one violating point is added to the core-set
- Minimum Enclosing Ball problem is solved for all points
belonging to the core-set (using SMO algorithm)
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Ball Vector Machines

At each iteration:
- instead of solving entire QP problem just one update is
performed - ball is shifted towards the max violating point
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Enclosing Sphere Machines (ESM)
= Our approach <=

At each iteration two vectors are found:
- one that violates “ball enclosing” conditions
- one that violates KKT conditions:

Vi (R2 “le — t,o(xi)HQ) — 0

and ball is shifted along the line joining these two vectors
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Now only, we present results of

extremely extensive comparisons

of

one of the most powerful & possibly the

most used off-shelf SVM software

LIBSVM (both L, & L, models) vs. the
last two geometric approaches (balls

and spheres) for training SVMs,
In a very strict

VALIDATION i.e. RESAMPLING

DOUBLE (NESTED) k-fold CROSS

experiment
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Remind!

k-fold CROSS VALIDATION is for
MODEL (ie,its HYPERPARAMETERS)
SELECTION

while a

DOUBLE (NESTED) k-fold CROSS
VALIDATION ie., RESAMPLING is for
MODELS COMPARISONS
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DOUELE ie, NESTED CVis msed for MODEL COMPARISONS and it goes as
Tollows:

There are two loops. The Ouer loop and the Inner one. EnVironment Of our
In each one you do a k-fold CV. k. is not necessarily equaal o k. experiments was as fO"OWS

h=10 and k=4

In oaefer loop you make 10 roughly equal splits

SVMs with Gaussian kernel
Ty e T Double 5x5 CV,

TRAINING TRAINING | TRAINING s VALIDATION |

8x8 hyperparameters (C, o)

Each time another validation chimk is validated and
idafion chumks,

=0 ‘ which amounts to
4-fold CV goes then as follows 1600 runs for each dataset

Dafne paramater 1, say © n 2V, suppose thens are r O values
Dafne paramater 2, say ooer of pokmomisd or vanance of Gaussian In Sk
suppose fhere ane 5 @ valves Le ovalues respectively

* Loop for parameter 1, say © n SVM

= Loop for parameser 2, say ovder of poly of vadancs of Gaussian in 3V Ru ns fo r eac h d atas et h ave

* Loop for Cross Valkdadon, Em=0

TRAINNG | TRAINNG | TRANNG | o
e | | been performed on 5

(=1

My, youn repeat inmer loop 10 fime

[ rmaowme | Trewse Xeon E5520 2.3 GHz CPUs
[ ramme | manwe | tranmc [RGB

B,

=" Training time is then

Errls (r, 5) marte. Find mind E7 1, and comesponding paramaiers

Train the SVM on AL the TRAINDNG (INNER LOOF) dats by using the best summed up i.e., given dsS a

parameters and caloalate # of emors for a gven VALTMATION chnmk

EumEn+Eoi i=1-10 single CPU time needed.

[ 3

E» calulated for different models (SVAL Dec. tree, ATH k-NN) are compared and winner is declared. 66/79




Comparisons results for datasets below

Number of Number of Number of

PN 6 classes attributes samples
optdigits 10 64 9,620
satimage 6 36 6,435 S
usps 10 256 9,298
pendigits 10 16 10,992
reuters 2 8,315 11,069

letter 26 16 20,000

adult 2 123 48,842 M
w3a 2 300 49,749

shuttle 7 7 58,000

web 2 300 64,700

jjcnn 2 22 141,691 L
intrusion 2 127 5,209,460 UL
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Learning time - S & M data sets

350000

300000 =

250000 =

200000 m SphereVM

u BallvM
m L2 SVvM
L1SVM

150000

100000

50000

oplidigits satimage usps pendigits reuters letter

5,620 6,435 9,298 10,992 11,069 20,000
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Accuracy - S & M data sets

m SphereVM

= BallvVM

m L2 SVM
L1SVM

optidigits satimage usps pendigits reuters letter

5,620 6,435 9,298 10,992 11,069 20,000
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Ratio of number of SVs
S & M data sets

m SphereVM

= BallvM

mL2 SVM
L1SVM

oplidigits satimage usps pendigits reuters letter

5,620 6,435 9,298 10,992 11,069 20,000
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Learning time — M & L & UL data sets

5Msec |
52 days is here ~ 2 MONTHS which is huge for even the most patient researchers

4500000 -
4 M sec

3500000 More than 1 MONTH is here, which is also huge for even the mo §#sE tient researchers
3Msec

m SphereVM
2500000 | Compare these times : E;Ig\',\:,,
and check the — L1SVM

2 M sec Wn slide 4\

1500000

1M sec

adult w3a shuttle web ijicnn1 intrusion

48,842 49,749 58,000 64,700 141,691 5,209,460

®
Notice that both LIBSVMs were not able to finish the learning here. L1 LIBSVM needed 60h/1 iteration only 71/79



Accuracy - M & L & UL data sets

m SphereVM

= BallvM

mL2SVM
L1SVM

adult w3a shuttle web ijcnn intrusion

48,842 49,749 58,000 64,700 141,691 5,209,460

®
Notice that both LIBSVMs were not able to finish the learning here. L1 LIBSVM needed 60h/1 iteration only 72/79



Ratio of number of SVs
M & L & UL data sets

0.7 ]

06 =

05

B SphereVM

= BallvM

m L2 SVM
L1SVM

adult w3a shuttle web ijcnn intrusion

48,842 49,749 58,000 64,700 141,691 5,209,460
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Multithreading by OpenMP*
A speedup for 12 threads

.

——

m SphereVM

= BalVM

mL2 SVM
L1SVM

adult usps letter shuttle web mnist

48,842 9,298 20,000 58,000 64,700 70,000

= Open Multi-Processing 74/79



Thus, sphere SVMs seem to offer both
a capacity to handle, and significant
accelerations for, both HARD (not
necessarily UL) and ULTRALARGE

datasets (over 1 mil samples).

The very next (we believe a feasible)
step may well be implementing spheres
on GP GPUs speeding them even more
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Data set The Last But Not the Least

1 optdigits - -

2 satimage Always Run Llnear SVM FIrSt
3 usps Here, we run our LINEARSVM

4 pendigits
5 reuters : b 2 35— T N el = .
6 letter 3. W ,,,,,,,,,,, W . A

7 adult

8 w3a %

9 shuttle ol 1] ]
10 web 11

ijjcnn1 12
intrusion

X 104 Speedup Ratio L /NL Accuracy Difference NL - L

7 ! B |

N
o
]

=
(&)
i

# of data
1-3,823
2-4,435
3-7,291
4 - 7,494 . A I B I I
5.7,770
6-15,000 M
7-32,561 M
8-4,912
9-43,500 M

10 - 49,749 M

11 - 49,990 M

12 - 4,898,431 UL

15— R |

Speedup Ratio L / NL
Accuracy Difference
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It's no time (yet) for CONCLUSIONS on the

topic of learning from HUGE datasets, except that

An ever-increasing number of data samples
requires rethinking about how to approach the
machine learning tasks

The very rethinking must include advances in

both |

ARDWARE and ALGORITHMS

GPU manycore processors are the first
obvious choice for the hardware right now

The next good option is to use some ideas from
the geometry

Our spheres algorithm for training SVMs have
been successfully implemented and presented
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Thanks for both being patient
and having stamina
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