
Journal of Information Assurance and Security.

ISSN 1554-1010 Volume 14 (2019) pp. 011-019

© MIR Labs, www.mirlabs.net/jias/index.html

MIR Labs, USA

An Empirical Validation of

Functional Redundancy Semantic

Metric as Error Detection

Indicator

Dalila Amara1, Ezzeddine Fatnassi1 and Latifa Rabai1,2

1 Higher Institute of Management of Tunis, University of Tunis,

SMART Lab, Tunis, Tunisia,

dalila.amara@gmail.com, Ezzeddine.fatnassi@gmail.com

2 College of Business, University of Buraimi, Al Buraimi,

P.C. 512, Sultanate of Oman

Latifa.rabai@gmail.com

Abstract: Software metrics are widely discussed and used as

quantitative software quality measures. The main objective of

these metrics is to help testers, managers and developers monitor

the degree of quality of their systems. They are generally

classified into syntactic and semantic categories. Most proposed

software metrics are successfully used in measuring internal

quality attributes like complexity and coupling. Concerning

external attributes like reliability, a suite of four sematic metrics

is proposed to assess programs’ redundancy in order to reflect

their ability to tolerate faults and monitor their reliability.

Literature shows that the key limitation of the different metrics

composing this suite is the lack of empirical studies to validate

them. Consequently, the main purpose of this study is to

empirically validate one of these metrics namely functional

redundancy, as measure of program function redundancy in one

side and as an error detection indicator in the other side. Results

show that this metric is strongly correlated with the program

output redundancy. This indicates that the functional

redundancy metric is useful as a measure of program

redundancy. Moreover, we show that it is useful as an error

detection indicator.

Keywords: Software Dependability, Fault Tolerance, Software

Redundancy, Semantic Metrics, Functional Redundancy Metric.

I. Introduction

Software quality is defined by the ISO/IEC standard [1] as the

capability of software product to satisfy stated and implied

needs when used under specified conditions. It is generally

represented through a number of characteristics or attributes

that may be internal i.e complexity or external like reliability

[2, 39]. These attributes need to be quantitatively measured in

order to help developers, testers and managers estimate or

predict the degree of their systems’ quality during the different

phases of the development life cycle.

Software quality measurement is the process of collecting

information related to the presented quality attributes [3]. The

common discussed way to perform software quality

measurement is software metrics [2, 3, 38]. They are defined

as quantitative measures of the different quality characteristics

[4, 5].

Numerous software metrics are proposed in the literature.

They are successfully used in measuring various quality

attributes [4, 6, 7] and they are generally classified into two

categories which are syntactic and semantic metrics. Syntactic

metrics are proposed to measure the different attributes related

to the program structure like complexity and cohesion.

The well-defined syntactic metrics include those of

Chidamber and Kemerer [6], Li and Henry [8] and Abreu et al.

[9] which are proposed to measure the Object- Oriented (OO)

properties i.e complexity, cohesion, inheritance, etc.

Concerning sematic metrics, they are proposed to measure

different quality attributes including the cited ones based on

the program functionality. Examples of semantic metrics

suites include those proposed by Etzkorn and Delugash [4],

Marcus and Poshyvanyk [10] and Stein et al. [11]. Further

details about software metrics are presented in [7, 12, 36, 37,

40].

As noted above, most of the proposed syntactic and

semantic metrics are used to assess internal quality attributes

i.e complexity and cohesion [2, 40]. For the external ones, i.e

reliability, few studies focused on their assessment. Among

them, Mili et al. [13] proposed a suite of four semantic metrics

whose objective is to assess programs information redundancy.

The measured redundancy is then used to reflect the ability of

these programs to tolerate faults through error detection,

masking and recovery. One of these metrics namely functional

redundancy, is proposed to help detect the program errors

Amara et al.

12

based on information redundancy assessment. Information

redundancy is one of software redundancy types and means

that use extra information than it is needed [5, 14].

Despite the importance of this suite, literature shows that it

is theoretically presented and manually computed. Also, there

is a lack of empirical studies to validate it. The metrics

validation consists of demonstrating the usefulness of the

metric to measure what it is purported to measure based on

case studies and experiments [4, 10, 11].

Consequently, we proposed in our previous works an

automated way to automatically generate the different metrics

composing this suite [15, 16]. The performed studies show that

it is possible to automatically generate these metrics for

different Java programs. However, further studies still

required to demonstrate that these metrics are measures of

programs’ redundancy in one side and that they are useful as

error detection and masking indicators in the other side.

Consequently, we focus in this paper on one of these metrics

namely functional redundancy semantic metric and the main

objectives are as follows:

• Demonstrate that the functional redundancy metric is

useful to quantitatively assess the redundancy of the

program function.

• Demonstrate that the functional redundancy metric is also

useful as an error detection indicator.

The remainder of this paper is organized as follows. In section

2, we present the redundancy use to perform fault tolerant

software systems. In section 3, we present the well-defined

software metrics for quality assessment including those

proposed for fault tolerance assessment. Section 4 describes

the functional redundancy semantic metric, its purpose, the

mathematical formulation as well as an illustrative example.

Section 5 presents the validation methodology of this metric

and describes the different case studies. Data analysis and

discussion are presented in section 6. Conclusion and

perspectives will be presented in section 7.

II. Software Redundancy Use for Fault

Tolerance

In this section, we present the key concepts on which this study

is constructed. These concepts are fault tolerance and fault

tolerance techniques, software redundancy and software

redundancy applications. The objective is to identify the

relationship between these concepts and to clarify the

motivation of our study.

A. Fault tolerance techniques

Software fault tolerance is one of the important means that

help to achieve dependable software systems as shown in

Figure. 1.

Figure 1. Software dependability concepts

Figure.1. shows that software dependability is described

through different quality attributes including reliability,

maintainability, safety and security. The main purpose is to

avoid software threads (faults, errors and failures). This may

be achieved using different dependability means which are

fault prevention, fault removal, fault forecasting and fault

tolerance.

Fault prevention consists in limiting the introduction of

faults during software construction using formal methods [17,

18]. Fault removal aims to reduce the number and severity of

existing faults by detecting and eliminating them using

software testing and formal inspection [3, 19, 20]. Fault

forecasting techniques aim to estimate the present number of

faults in the system, their future occurrence as well as their

consequences [3, 21].

Concerning fault tolerance, it aims to provide the required

mechanisms to sidestep the manifestation of the remaining

faults which avoid the system failure [20, 21]. Different

studies show up the importance of fault tolerance against the

other ones for two main reasons. First, fault avoidance and

removal are based on exhaustive testing and program

correctness and there are no reliable tools to guarantee that

complicated software systems are error-free [3]. Second, it is

not possible to remove all faults [22].

Consequently, software fault tolerance is proposed as an

alternate technique since it allows the presence of faults in the

system, but at the same time, it provides the required

mechanisms to guarantee the software operation and delivery

through failure avoidance [23]. It is based on three major

phases [24, 25]:

• Error detection: is the ease of detecting errors in the state

of a program in execution [24]. Two redundancy semantic

metrics are proposed for error detection namely state

redundancy and functional redundancy [3].

• Error recovery: identifies the erroneous state before its

substitution with an error-free one [25]. Mili et al. [13]

proposed a semantic metric for error recovery termed error

non-determinacy.

An Empirical Validation of Functional Redundancy Semantic Metric as Error Detection Indicator

13

• Error compensation: provides fault masking. A semantic

metric called error non-injectivity as a measure of the

program’ ability to mask errors is proposed [13].

Achieving fault tolerance systems requires the use of different

techniques in the different presented phases. So, numerous

fault tolerance techniques are proposed in the literature.

Different criteria are used to classify these techniques like

program versioning [23], diversity [21], the adjudication and

execution scheme [20]. So, we present in Figure.2 most of

these techniques:

Figure 2. Fault tolerance techniques and metrics

Figure.2. shows that fault tolerance techniques are generally

classified into two major categories which are single version

and multi version techniques. Single version techniques focus

on improving the fault tolerance of a single piece of software

[23]. Multi version programming techniques focus on

improving the fault tolerance of different versions of a

program having the same specification [21]. They consist of

three major groups which are design diversity, data diversity

and hybrid techniques that combine the two previous ones

(See Figure.2.). For further details about these techniques,

their advantages and disadvantages, readers are advised to see

Pullum [20] and Rizwan [22].

As presented in Figure. 2., most of these techniques are

based around a common concept that is software redundancy

that will be described in the following subsection.

B. Software redundancy

Redundancy is the basic concept of fault tolerance techniques

and was firstly used in hardware systems by providing more

physical copies of components like redundant processors,

memories, buses, or power supplies in order to improve the

reliability of basic components [21, 39].

• In software systems, software redundancy is defined as the

duplication of state information or system function [14, 26].

For Dubrova [21], it is useful in detecting and correcting

faults. In fact, software redundancy has different forms [26,

27]:

• Information redundancy: is related to the coding theory

originally defined by Richard Hamming [33] and Claude

Shannon [34]. It indicates the additional used information

(bits) to represent a program state than it is required.

Examples include parity code bit, error correcting codes,

Hamming code and check sums [21].

• Functional redundancy: consists of using the same

program specification to generate different algorithms or

programs versions which perform the same functionality

[27].

• Time redundancy: consists on repeating the execution of

the failed process. For Pullum [20] and Dubrova [21], this

type of software redundancy is not likely appropriate to be

applied in real time applications and the other redundancy

techniques are more appropriate for these applications.

C. Redundancy applications

As mentioned above, most of fault tolerance techniques are

based on software redundancy. Literature shows that it is

exploited for different applications [7]. Following are the most

discussed ones:

- In 1976, redundancy is exploited through N-version

programming technique and results show that this

approach is efficient to achieve fault tolerant systems [19].

This technique is also used to compare the probability of

failure between single and N-version systems.

- In 1990, redundancy is exploited for self-checking

programs [24]. It is useful to check the own program’

behavior during execution [28].

- In 1991, redundant software systems configured in a

N-version structure are used to improve reliability [29].

- In 2003, redundancy structured in mutation testing is

exploited through the injection of faults in numerous

program versions. Results show its aptness to reflect

systems’ ability to tolerate faults [23].

- In 2009, redundancy is exploited to identify the code

fragments having the same functionality based on the code

semantic analysis. Results show the existence of

functionally equivalent fragments having different syntax

which leads to optimize the code and facilitate its

understanding [30].

- In 2014, redundancy is exploited to identify the

relationship between structural similarity, vocabulary

similarity and method name similarity. Results show that

the source code similarity cannot be always be reflected

through these three concepts [31].

- In 2014, redundancy is exploited to reflect the ability of

software systems to tolerate faults [13].

- In 2015, redundancy is also exploited to identify code

fragments semantic similarity. Results show that it is

possible to discriminate the minimally different code from

Amara et al.

14

the truly redundant one in one side, and the low-level code

redundancy from high-level algorithmic redundancy in the

other side.

- In 2018, Asghari et al. [27] proposed a method to detect

transient faults in the processor core in order to improve

real time multitask system’ fault tolerance based on

information redundancy.

To sum up, redundancy is useful in different applications as

presented above. However, literature shows that there is a lack

of studies focusing on its assessment [5]. So, as software

metrics are widely discussed as quantitative measures of

software quality attributes like complexity and cohesion [4],

Mili et al. [13] proposed a suite of four semantic metrics to

assess programs’ redundancy as it is shown in Figure.2. The

objective is to reflect the ability of programs to tolerate faults

and monitor their reliability.

The key limitation of this suite is that is manually computed

and theoretically presented. So, further experimental studies

still required to demonstrate if the proposed metrics are useful

as measures of program redundancy and how this redundancy

may be exploited to reflect the program ability to tolerate

faults [13]. The different metrics composing this suite are

described in the following section.

III. Software Metrics for Fault Tolerance

Assessment

This section presents the use of software metrics for fault

tolerance assessment. So, we start by presenting a summarize

of the well-defined syntactic and semantic suites as measures

of various quality attributes. Then, we detail the proposed

semantic metrics suite of Mili et al. [13] as redundancy

measures.

A. Software metrics for quality assessment

Numerous syntactic and semantic metrics are proposed in

literature to assess different quality attributes.

Most of the proposed syntactic metrics are used to assess

internal quality attributes. For instance, we can cite those

proposed by Chidamber and Kemerer (C&K) [6], Li and

Henry [8], Abreu et al. [9], Bansiya and Davis [32] and much

others [36, 37]. These suites are proposed as measures of

programs complexity, cohesion, inheritance, coupling, and

much other OO attributes related to the program structure [2,

39].

The proposed semantic metrics suites include those of

Etzkorn and Delugash [4], Stein et al. [11], Cox et al. [35],

Marcus and Poshyvanyk [10] and Mili et al. [13]. Compared to

syntactic metrics, which are related to the program structure

(attributes, number of methods, etc), semantic metrics depend

on the program understanding through comments, identifier,

concepts and concepts relationships.

Most of the presented software metrics are used to assess

internal attributes. However, the suite proposed by Mili et al.

[13] aims to reflect the program ability to tolerate faults based

on redundancy assessment. So, we present in the following

subsection, the different metrics composing this suite.

B. Redundancy-based semantic metrics suite

Four basic semantic metrics are proposed by Mili et al. [13] to

assess program redundancy. These metrics are namely state

redundancy, functional redundancy, non-injectivity and

non-determinacy:

• State redundancy: is proposed to quantify the program

information redundancy expressed in Shannon bits. It

measures the excess of information in both initial and final

program states. The main purpose of this metric is to help

detect errors as one of the main fault tolerance phases [3].

For more details about the automated computing of this

metric, readers are invited to see our previous work [15].

• Functional redundancy: is proposed to quantify the

program redundancy that is the excess data of the output

generated by the program function. The purpose of this

metric is to help detect errors in one side, and to check the

correctness of the program function in another side [13,

14]. For more details about the automated computing of

this metric, readers are invited to see our previous work

[16].

• Non-injectivity: is proposed to assess program redundancy

using the non-injectivity of this program. The

non-injectivity expresses the amount (bits) of uncertainty

do we have about the initial state if we know the final state.

The purpose of this metric is to mask errors by producing a

subsequent state that bears no trace of the error.

• Non-determinacy: The non-determinacy metric (ND)

reflects the program’ specification flexibility. It means the

amount of information the program may use to tolerate

faults without violating its specification. Thus, a program

is determinant if it doesn’t tolerate faults; the final state of

the program is always different from the expected one. A

program is said non-determinant (has a non-deterministic

specification) when it fails to compute its exact intended

function and still satisfying the specification, so the final

state may be equal to the expected one. Consequently, the

non-determinacy metric is proposed to measure the extent

to which a program may deviate from its intended behavior

without violating its specification [13].

We recall that we focus in this study on the empirical

assessment of the functional redundancy semantic metric.

IV. Functional Redundancy Semantic Metric

We describe in this section the main purpose of the functional

redundancy semantic metric, its mathematical formulation as

well as an illustrative example to clarify its purpose.

The functional redundancy metric reflects the excess output

data generated by a program function in order to verify the

proper execution of the function [14].

Mathematically speaking, this metric is equated with the

non-surjectivity of the program function which means that not

all program’ outputs (final states) are mapped to at least one

input (initial state) [13]. Hence, the functional redundancy of a

program g on a space S is denoted by φ (g) and defined by:

φ(g) = (H(S) − H(Y))/H(Y) (1)

- H(S) is the state space of the program: the maximum value

(size in bits) that the declared program variables may take,

An Empirical Validation of Functional Redundancy Semantic Metric as Error Detection Indicator

15

- Y is the random variable (range or output space) of g

defined as the set of final states of the program’s function,

- H(Y) = H(σf), is the entropy of the output produced by g

defined as the number of bits required to store the result of

the program’ execution,

- φ(g) is the functional redundancy of the program g.

From the value of this metric, three possible interpretations are

drawn [13, 14].

• if φ(g) = 0: there is no scope for checking any property

since all bits are used, the input and output spaces are

equal.

• if 0 < φ(g) < 1: we can check part of the result against

redundant information,

• if φ(g) > 0: there are larger bits of redundancy when

executing the program.

As an illustrative example, consider two functions F1=x and

F2=x%4, and B5, the input range that is a set of natural

numbers represented in a word of five bits as shown in

Figure.3.

Figure 3. Illustrative Example of functional redundancy

metric

Figure.3 shows that for the first function, the possible output

range is [0…31], hence all five bits are used and then there is

no redundancy. However, for the second function, the output

range is [0, 1, 2, 3]. In other words, only two bits of

information are needed, whereas the three other ones are

redundancy bits [14].

V. Empirical Validation of Functional

redundancy metric

This section presents the validation methodology, the data

collection and the computing process of the functional

redundancy metric.

A. Validation methodology

As presented in the previous sections, the functional

redundancy semantic metric (FR) is proposed to assess

programs redundancy in order to help detecting errors and to

check the correctness of the program function output [13].

To validate this hypothesis, we are based on the following

research questions (RQ):

• RQ1: Does the functional redundancy metric is useful to

measure programs redundancy?

• RQ2: Does the functional redundancy semantic metric

could be used to detect errors?

B. Data collection

In order to answer the previous RQs, we will perform two main

experiments. For each experiment, we resort to Java language

and the Eclipse development environment (version: Neon.3

Release (4.6.3)) to automatically generate the presented

functional redundancy metric.

1) Experiment 1: Functional redundancy metric for

redundancy assessment (RQ1)

This experiment aims to demonstrate whether the functional

redundancy semantic metric can be considered as quantitative

measure of program redundancy expressed through the excess

output data generated by this program function.

In this experiment, we consider five programs which are the

addition of two integers (Sum), the Greatest Common Divisor

(GCD), the average of two integers (AVG), the Power

program (Power) and the maximum value program

(MaxValue). So, to answer the first RQ (RQ1), we proceed as

follows:

- We perform 10 different executions for each program. In

each execution, we consider 1000 random input values but

we change each time the range of these inputs. So:

o We start by using 1000 random inputs that

range from (2^1+1) to 2^3.

o We increase the range of inputs by adding in

each new execution, 3 new bits. So, in the

second execution, the input values will

range from (2^3+1) to 2^6.

o In the third execution, we add 3 other bits,

so, the input values will range from (2^6+1)

to 2^9.

o In the fourth execution, 3 other bits are

added, the input values will range from

(2^9+1) to 2^12.

o In the fifth execution, 3 other bits are added,

the input values will range from (2^12+1) to

2^15.

o We proceed in the same way for the other

executions by adding in each time 3 new bits.

Amara et al.

16

P1 (Faulty version):

{int x, x1, x2, x3, x4, x5;

1 x= rand.nextInt(100)+1;

2 x=x*x1;

3 x=2*x+2*x3;

4 x=x/x1;

5 x=x4+x4;

6 x=x*x5;

}

P (correct version):

{int x, x1, x2, x3, x4, x5;

1 x= rand.nextInt(100) + 1;

2 x=x+x1;

3 x=2*x+2*x3;

4 x=x%x1;

5 x=x+x4;

6 x=x*x5;

}

So, for the final execution, the 1000 random

input values will range from (2^27+1) to 2^30.

- For each experiment, we generate the FR metric as well as

the used entropy of the program output which is the

number of bits used to store the output value. We aim to

identify the relationship between these two variables.

The process of the automatic generation of FR metric consists

of different steps. The main steps are presented in Figure. 4

that details the different steps for the automatic generation of

this metric for the Power program. Concerning the other

programs, the same steps are used:

 Figure 4. A part of functional redundancy computing for

the Power program

This process consists of the following steps:

• First, the state space H(S) of each program as the entropy

(bits) of the declared variables is computed. For instance,

for the Power program, the state space is computed as

shown in lines 36 in Figure.4.

• Second, we use Equation (1) to compute the final state

space H(Y) we denote by FS that is the number of bits

(entropy) required to store the result of the program’

execution. For instance, for the Power program, this value

is computed as shown in line 40 in Figure.4.

• Third, the functional redundancy metric is deduced using

Equation (1). For instance, for the Power program, it is

computed as it is shown in line 42 of Figure. 4. The same

steps are used to compute this metric for the other

programs considering the variables used for each one.

The structure of the generated data sets for each program is

presented in Table 1:

Table 1. Structure of the generated Data sets for experiment 1

Entropy FR metric

The data sets details are available for readers at this link:

https://sites.google.com/view/fr-semantic-metric-data-sets/ac

cueil. The results analysis will be performed in section VI.A.

2) Experiment 2: Functional redundancy metric for

Error detection (RQ2)

This experiment aims to demonstrate whether the functional

redundancy can be considered as an error detection indicator.

In this experiment, we consider two P and P1 programs. P is

a correct program on which faults are injected to obtain a new

version of this program P1 (see coloured statements).

The injected faults are not related to the program syntax but

they have an impact on its functionality:

So, to answer RQ2, we proceed as follows:

- We automatically generate the FR semantic metric for the

two P and P1 programs using 1000 random inputs.

- We compare the results of the two programs, the objective

is to identify if the FR metric will be different between P

and P1 programs.

The structure of the generated data sets is presented in Table 2:

Table 2. Structure of the generated Data sets for experiment 2

FR metric for P (Correct

version)

FR metric for P1 (Faulty

version)

The data sets details are available for readers at this link:

https://sites.google.com/view/fr-semantic-metric-data-sets/ac

cueil. The results analysis will be performed in section VI.B.

VI. Data Analysis and Discussion

This section describes the data analysis and discussion for

each of the presented experiments.

A. Experiment 1: Functional redundancy metric for

redundancy assessment (RQ1)

 Based on the generated data sets of the first experiment

represented in Table 1, we aim to identify whether the FR

semantic metric is useful to assess the excess data (redundancy)

of a program output. So, we resort to a statistical methodology

and we proceed as follows:

- We start by data standardization: this step is required since

the FR and the used entropy variables have different units.

So, we use the STATA tool to perform the standardization

of our data sets.

- We perform the normality tests to identify the appropriate

correlation test to be used. For more details, readers are

referred to [15].

- We perform the Spearman correlation test based on the

following hypothesis:

o H0: ρ = 0 (null hypothesis) there is no

An Empirical Validation of Functional Redundancy Semantic Metric as Error Detection Indicator

17

significant correlation between FR metric

and the used entropy.

o H1: ρ ‡ 0 (alternative hypothesis) there is a

significant correlation between FR metric

and the used entropy.

The results of Spearman correlation for the different programs

are presented in Table 3:

Table 3. Structure of the generated Data sets for experiment 1

Entropy FR metric

Table 3 shows that most of the correlation coefficients are

strong and negative for the different programs. This indicates

that there is a strong negative correlation between the

functional redundancy and the used entropy of the program

output. In other words, each time the used entropy increases,

the FR metric that measures the redundancy of this program

output will tend to decrease. Consequently, it is possible to

answer the RQ1 which suggests that the FR measures the

redundancy of the program function. These results are also

summarized in Figure. 5.

Figure 5. Correlation between FR and the used entropy

Figure. 5 shows that for the different programs, the output

redundancy computed by the FR metric as the excess output

data generated by these programs function is negatively

correlated by the used entropy of this output. So, we state that

the FR metric is useful to quantitatively measure programs

redundancy.

B. Experiment 2: Functional redundancy metric for error

detection (RQ2)

To perform the analysis of the generated data sets of the

second experiment presented in Table 2, we compare the FR

metric for the two P and P1 programs presented in section

V.B.2. Results are illustrated in Figure.6:

Figure 6. Comparison of FR metric between P and P1

programs

Figure.6 shows that there is a difference between the values of

the FR metric between the two programs. So, for the correct

program, the value of this metric is 14.64, whereas, for P1, its

value is 9.54. This difference is caused by the injected faults.

Hence, for developers and testers, the FR metric is useful to

indicate whether their programs are error-free. Consequently,

it is possible to answer the second RQ (RQ2) and we can note

that the FR metric is useful as an error detection indicator.

C. Overall analysis of the results

The functional redundancy semantic metric is proposed as

quantitative measure of programs redundancy on one side and

as an error detection indicator on the other side. The

experimental study we performed, confirms these hypotheses.

Hence, we stated that the functional redundancy metric is

useful to compute the excess output data generated by a

program function. This because the FR metric is negatively

correlated with the used entropy of this output. Moreover, this

metric is useful for developers and testers since it indicates

whether their programs are error-free.

VII. Conclusion and Perspectives

The presented study discusses three main concepts which are

software fault tolerance, redundancy and software metrics for

redundancy assessment.

The literature performed in this paper shows that fault

tolerance is one of the quantifiable attributes that helps to

achieve reliable and dependable software systems. Most of

fault tolerance techniques are based on redundancy. The

assessment of redundancy is necessary required to reflect the

ability of software programs to tolerate faults. Moreover,

considerable attention has been paid to the use of semantic

metrics as quantitative measures of programs redundancy.

Among these metrics, the functional redundancy semantic

metric is defined to measure programs redundancy as the

excess output data generated by a program function. On

another hand, this metric is proposed to be used as an error

detection indicator based on the assessed programs

redundancy. However, the key limitation of this metric is that

it is manually computed for procedural programs and only a

theoretical basis was presented for it. To solve this problem,

we started by proposing an automated way to compute it for

different java programs.

Amara et al.

18

Based on a robust statistical approach, we perform the

analysis of the generated data sets, different interpretations are

identified. First, for developers, an automatic calculation of

this metric is necessary required. Additionally, it is an

important step that helps to construct an empirical data base of

this metrics’ values. Then, we demonstrate that the functional

redundancy metric is useful as a quantitative measure of

programs redundancy. Finally, we demonstrate that this metric

is useful as an error detection indicator based on programs

redundancy assessment.

Even though the presented benefits presented in this work

could be enhanced. As future work, we envision to focus on

extending our experiment to incorporate open source java

programs and to study the use of these metrics as measures of

different quality attributes like defect density.

References

[1] ISO/IEC 25000:2014 Systems and software Engineering

— Systems and software product Quality Requirements

and Evaluation (SQuaRE)-- Guide to SQuaRE, 4.33

[2] Fenton, N., & Bieman, J. (2014). Software metrics: a

rigorous and practical approach. CRC press.

[3] Lyu, M. R. (1996). Handbook of software reliability

engineering.

[4] Etzkorn, L., & Delugach, H. (2000). Towards a semantic

metrics suite for object-oriented design. In Technology

of Object-Oriented Languages and Systems, 2000.

TOOLS 34. Proceedings. 34th International Conference

on (pp. 71-80). IEEE doi :

10.1109/TOOLS.2000.868960.

[5] Carzaniga, A., Mattavelli, A., & Pezzè, M. (2015, May).

Measuring software redundancy. In Proceedings of the

37th International Conference on Software

Engineering-Volume 1 (pp. 156-166). IEEE Press.

[6] Chidamber, S. R., & Kemerer, C. F. (1994). A metrics

suite for object oriented design. IEEE Transactions on

software engineering, 20(6), 476-493. doi:

10.1109/32.295895.

[7] Mattavelli, A. (2016). Software redundancy (Doctoral

dissertation, Università della Svizzera italiana).

[8] Li, W., & Henry, S. (1993, May). Maintenance metrics for

the object oriented paradigm. In Software Metrics

Symposium, 1993. Proceedings., First International (pp.

52-60). IEEE.

[9] Abreu, F. B., & Melo, W. (1996). Evaluating the impact

of OO Design on Software Quality. In Proc. Third Int’l

Software Metrics Symp.

[10] Marcus, A., Poshyvanyk, D., & Ferenc, R. (2008). Using

the conceptual cohesion of classes for fault prediction in

object-oriented systems. IEEE Transactions on Software

Engineering, 34(2), 287-300.

[11] Stein, C., Etzkorn, L., Gholston, S., Farrington, P., Utley,

D., Cox, G., & Fortune, J. (2009). Semantic metrics:

Metrics based on semantic aspects of software. Applied

Artificial Intelligence, 23(1), 44-77. doi:

10.1080/08839510802573574.

[12] Arvanitou, E. M., Ampatzoglou, A., Chatzigeorgiou, A.,

& Avgeriou, P. (2016). Software metrics fluctuation: a

property for assisting the metric selection process.

Information and Software Technology, 72, 110-124.

[13] Mili, A., Jaoua, A., Frias, M., & Helali, R. G. M. (2014).

Semantic metrics for software products. Innovations in

Systems and Software Engineering, 10(3), 203-217.

[14] Mili, A., & Tchier, F. (2015). Software testing: Concepts

and operations. John Wiley & Sons.

[15] Amara, D., Fatnassi, E., & Rabai, L. (2017, December).

An Automated Support Tool to Compute State

Redundancy Semantic Metric. In International

Conference on Intelligent Systems Design and

Applications (pp. 262-272). Springer, Cham.

[16] Amara, D., Fatnassi, E., & Rabai, L. (2018, December).

An Empirical Assessment of Functional Redundancy

Semantic Metric. In International Conference on

Intelligent Systems Design and Applications. Springer,

Cham.

[17] Bourque, P., & Fairley, R. E. (2014). Guide to the

software engineering body of knowledge (SWEBOK

(R)): Version 3.0. IEEE Computer Society Press.

[18] Boulanger, J. L. (2017). Certifiable Software

Applications 4.

[19] Avizienis, A., Laprie, J. C., Randell, B., & Landwehr, C.

(2004). Basic concepts and taxonomy of dependable and

secure computing. IEEE transactions on dependable and

secure computing, 1(1), 11-33.

[20] Pullum, L. L. (2001). Software fault tolerance techniques

and implementation. Artech House.

[21] Dubrova, E. (2013). Fault-tolerant design (pp. 55-65).

New York: Springer.

[22] Rizwan, M., Nadeem, A., & Khan, M. B. (2015,

December). An evaluation of software fault tolerance

techniques for optimality. In Emerging Technologies

(ICET), 2015 International Conference on (pp. 1-6).

IEEE.

[23] Lyu, M. R., Huang, Z., Sze, S. K., & Cai, X. (2003,

November). An empirical study on testing and fault

tolerance for software reliability engineering. In

Software Reliability Engineering, 2003. ISSRE 2003.

14th International Symposium on (pp. 119-130). IEEE.

[24] Jaoua, A., & Mili, A. (1990). The use of executable

assertions for error detection and damage assessment.

Journal of Systems and Software, 12(1), 15-37.

[25] Laprie, J. C. (1992). Dependability: Basic concepts and

terminology. In Dependability: Basic Concepts and

Terminology (pp. 3-245). Springer, Vienna.

[26] Mili, A., Wu, L., Sheldon, F. T., Shereshevsky, M., &

Desharnais, J. (2006, March). Modeling Redundancy:

Quantitative and Qualitative Models. In AICCSA (pp.

1-8).

[27] Asghari, S. A., Marvasti, M. B., & Rahmani, A. M. (2018).

Enhancing transient fault tolerance in embedded systems

through an OS task level redundancy approach. Future

Generation Computer Systems, 87, 58-65.

[28] Verma, A., Ghartaan, A., & Gayen, T. (2016). Review of

Software Fault-Tolerance Methods for Reliability

Enhancement of Real-Time Software Systems.

International Journal of Electrical and Computer

Engineering (IJECE), 6(3), 1031-1037.

[29] Eckhardt, D. E., Caglayan, A. K., Knight, J. C., Lee, L. D.,

McAllister, D. F., Vouk, M. A., & Kelly, J. P. J. (1991).

An experimental evaluation of software redundancy as a

strategy for improving reliability. IEEE Transactions on

https://doi.org/10.1109/TOOLS.2000.868960
https://doi.org/10.1109/TOOLS.2000.868960
https://doi.org/10.1109/32.295895
https://doi.org/10.1080/08839510802573574

An Empirical Validation of Functional Redundancy Semantic Metric as Error Detection Indicator

19

software engineering, 17(7), 692-702.

doi:10.1109/32.83905.

[30] Jiang, L., & Su, Z. (2009, July). Automatic mining of

functionally equivalent code fragments via random

testing. In Proceedings of the eighteenth international

symposium on Software testing and analysis (pp. 81-92).

ACM. doi : 10.1145/1572272.1572283.

[31] Higo, Y., & Kusumoto, S. (2014, November). How

should we measure functional sameness from program

source code? an exploratory study on java methods. In

Proceedings of the 22nd ACM SIGSOFT International

Symposium on Foundations of Software Engineering (pp.

294-305). ACM. doi: 10.1145/2635868.2635886.

[32] Bansiya, J., Davis, C., & Etzkorn, L. (1999). An

entropy‐based complexity measure for object‐oriented

designs. Theory and Practice of Object Systems, 5(2),

111-118. doi: 10.1002/(SICI)1096-9942.

[33] Hamming, R. W. (1950). Error detecting and error

correcting codes. Bell System technical journal, 29(2),

147-160.

[34] Shannon, C. E. (2001). A mathematical theory of

communication. ACM SIGMOBILE mobile computing

and communications review, 5(1), 3-55.

[35] Cox, G.W, Gholston S.E., Utley D. R., Etzkorn L.H., Gall

C.S, Farrington P.A. and Fortune J.L. Empirical

Validation of the RCDC and RCDE Semantic

Complexity Metrics for Object-oriented Software,

Journal of Computing and Information Technology - CIT

15(2), pp. 151- 160 (2007).

[36] Nuñez-Varela, A. S., Perez-Gonzalez, H. G.,

Martínez-Perez, F. E., & Soubervielle-Montalvo, C.

(2017). Source code metrics: A systematic mapping

study. Journal of Systems and Software, 128, 164-197.

[37] Arvanitou, E. M., Ampatzoglou, A., Chatzigeorgiou, A.,

Galster, M., & Avgeriou, P. (2017). A mapping study on

design-time quality attributes and metrics. Journal of

Systems and Software, 127, 52-77.

[38] Tahir, T., Rasool, G., & Gencel, C. (2016). A systematic

literature review on software measurement programs.

Information and Software Technology, 73, 101-121.

[39] Kabir, S. (2017). An overview of fault tree analysis and its

application in model-based dependability analysis.

Expert Systems with Applications, 77, 114-135.

[40] de AG Saraiva, J., De França, M. S., Soares, S. C.,

Fernando Filho, J. C. L., & de Souza, R. M. (2015).

Classifying metrics for assessing object-oriented

software maintainability: A family of metrics’ catalogs.

Journal of Systems and Software, 103, 85-101.

Author Biographies

Dalila Amara PhD student and member of research team

at SMART research laboratory, High Institute of

Management, Tunis University, Tunisia. Research

interests include software engineering and software

quality measurement.

Ezzeddine Fatnassi Assistant professor of computer

science, and member of research team at SMART research

laboratory. PhD in computer science is received from High

Institute of Management, Tunis University, Tunisia in

2015. Research interests include optimization heuristics

and software engineering.

Latifa Rabai Professor of computer science, College of

Business, University of Buraimi, Al Buraimi, Sultanate of

Oman. Member of research team at SMART research

laboratory, High Institute of Management, Tunis

University, Tunisia. Research interests include software

engineering, E-learning, computer security and reliability

and cloud computing.

https://doi.org/10.1109/32.83905
https://doi.org/10.1145/1572272.1572283
https://doi.org/10.1145/2635868.2635886

