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Abstract: Software metrics are widely discussed and used as 

quantitative software quality measures. The main objective of 

these metrics is to help testers, managers and developers monitor 

the degree of quality of their systems. They are generally 

classified into syntactic and semantic categories. Most proposed 

software metrics are successfully used in measuring internal 

quality attributes like complexity and coupling. Concerning 

external attributes like reliability, a suite of four sematic metrics 

is proposed to assess programs’ redundancy in order to reflect 

their ability to tolerate faults and monitor their reliability. 

Literature shows that the key limitation of the different metrics 

composing this suite is the lack of empirical studies to validate 

them. Consequently, the main purpose of this study is to 

empirically validate one of these metrics namely functional 

redundancy, as measure of program function redundancy in one 

side and as an error detection indicator in the other side. Results 

show that this metric is strongly correlated with the program 

output redundancy. This indicates that the functional 

redundancy metric is useful as a measure of program 

redundancy. Moreover, we show that it is useful as an error 

detection indicator. 

 
Keywords: Software Dependability, Fault Tolerance, Software 

Redundancy, Semantic Metrics, Functional Redundancy Metric. 

I. Introduction 

Software quality is defined by the ISO/IEC standard [1] as the 

capability of software product to satisfy stated and implied 

needs when used under specified conditions. It is generally 

represented through a number of characteristics or attributes 

that may be internal i.e complexity or external like reliability 

[2, 39]. These attributes need to be quantitatively measured in 

order to help developers, testers and managers estimate or 

predict the degree of their systems’ quality during the different 

phases of the development life cycle. 

Software quality measurement is the process of collecting 

information related to the presented quality attributes [3]. The 

common discussed way to perform software quality 

measurement is software metrics [2, 3, 38]. They are defined 

as quantitative measures of the different quality characteristics 

[4, 5]. 

Numerous software metrics are proposed in the literature. 

They are successfully used in measuring various quality 

attributes [4, 6, 7] and they are generally classified into two 

categories which are syntactic and semantic metrics. Syntactic 

metrics are proposed to measure the different attributes related 

to the program structure like complexity and cohesion.  

The well-defined syntactic metrics include those of 

Chidamber and Kemerer [6], Li and Henry [8] and Abreu et al. 

[9] which are proposed to measure the Object- Oriented (OO) 

properties i.e complexity, cohesion, inheritance, etc. 

Concerning sematic metrics, they are proposed to measure 

different quality attributes including the cited ones based on 

the program functionality. Examples of semantic metrics 

suites include those proposed by Etzkorn and Delugash [4], 

Marcus and Poshyvanyk [10] and Stein et al. [11]. Further 

details about software metrics are presented in [7, 12, 36, 37, 

40]. 

As noted above, most of the proposed syntactic and 

semantic metrics are used to assess internal quality attributes 

i.e complexity and cohesion [2, 40]. For the external ones, i.e 

reliability, few studies focused on their assessment. Among 

them, Mili et al. [13] proposed a suite of four semantic metrics 

whose objective is to assess programs information redundancy. 

The measured redundancy is then used to reflect the ability of 

these programs to tolerate faults through error detection, 

masking and recovery. One of these metrics namely functional 

redundancy, is proposed to help detect the program errors 
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based on information redundancy assessment. Information 

redundancy is one of software redundancy types and means 

that use extra information than it is needed [5, 14].  

Despite the importance of this suite, literature shows that it 

is theoretically presented and manually computed. Also, there 

is a lack of empirical studies to validate it. The metrics 

validation consists of demonstrating the usefulness of the 

metric to measure what it is purported to measure based on 

case studies and experiments [4, 10, 11].  

Consequently, we proposed in our previous works an 

automated way to automatically generate the different metrics 

composing this suite [15, 16]. The performed studies show that 

it is possible to automatically generate these metrics for 

different Java programs. However, further studies still 

required to demonstrate that these metrics are measures of 

programs’ redundancy in one side and that they are useful as 

error detection and masking indicators in the other side. 

Consequently, we focus in this paper on one of these metrics 

namely functional redundancy semantic metric and the main 

objectives are as follows: 

• Demonstrate that the functional redundancy metric is 

useful to quantitatively assess the redundancy of the 

program function. 

• Demonstrate that the functional redundancy metric is also 

useful as an error detection indicator. 

The remainder of this paper is organized as follows. In section 

2, we present the redundancy use to perform fault tolerant 

software systems. In section 3, we present the well-defined 

software metrics for quality assessment including those 

proposed for fault tolerance assessment. Section 4 describes 

the functional redundancy semantic metric, its purpose, the 

mathematical formulation as well as an illustrative example. 

Section 5 presents the validation methodology of this metric 

and describes the different case studies. Data analysis and 

discussion are presented in section 6. Conclusion and 

perspectives will be presented in section 7. 

II. Software Redundancy Use for Fault 

Tolerance  

In this section, we present the key concepts on which this study 

is constructed. These concepts are fault tolerance and fault 

tolerance techniques, software redundancy and software 

redundancy applications. The objective is to identify the 

relationship between these concepts and to clarify the 

motivation of our study. 

A. Fault tolerance techniques 

Software fault tolerance is one of the important means that 

help to achieve dependable software systems as shown in 

Figure. 1. 

 

 

 
Figure 1. Software dependability concepts 

Figure.1. shows that software dependability is described 

through different quality attributes including reliability, 

maintainability, safety and security. The main purpose is to 

avoid software threads (faults, errors and failures). This may 

be achieved using different dependability means which are 

fault prevention, fault removal, fault forecasting and fault 

tolerance. 

Fault prevention consists in limiting the introduction of 

faults during software construction using formal methods [17, 

18]. Fault removal aims to reduce the number and severity of 

existing faults by detecting and eliminating them using 

software testing and formal inspection [3, 19, 20]. Fault 

forecasting techniques aim to estimate the present number of 

faults in the system, their future occurrence as well as their 

consequences [3, 21]. 

Concerning fault tolerance, it aims to provide the required 

mechanisms to sidestep the manifestation of the remaining 

faults which avoid the system failure [20, 21]. Different 

studies show up the importance of fault tolerance against the 

other ones for two main reasons. First, fault avoidance and 

removal are based on exhaustive testing and program 

correctness and there are no reliable tools to guarantee that 

complicated software systems are error-free [3]. Second, it is 

not possible to remove all faults [22]. 

Consequently, software fault tolerance is proposed as an 

alternate technique since it allows the presence of faults in the 

system, but at the same time, it provides the required 

mechanisms to guarantee the software operation and delivery 

through failure avoidance [23]. It is based on three major 

phases [24, 25]: 

• Error detection: is the ease of detecting errors in the state 

of a program in execution [24]. Two redundancy semantic 

metrics are proposed for error detection namely state 

redundancy and functional redundancy [3]. 

• Error recovery: identifies the erroneous state before its 

substitution with an error-free one [25]. Mili et al. [13] 

proposed a semantic metric for error recovery termed error 

non-determinacy. 
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• Error compensation: provides fault masking. A semantic 

metric called error non-injectivity as a measure of the 

program’ ability to mask errors is proposed [13]. 

Achieving fault tolerance systems requires the use of different 

techniques in the different presented phases. So, numerous 

fault tolerance techniques are proposed in the literature. 

Different criteria are used to classify these techniques like 

program versioning [23], diversity [21], the adjudication and 

execution scheme [20]. So, we present in Figure.2 most of 

these techniques: 

 

 
Figure 2. Fault tolerance techniques and metrics 

Figure.2. shows that fault tolerance techniques are generally 

classified into two major categories which are single version 

and multi version techniques. Single version techniques focus 

on improving the fault tolerance of a single piece of software 

[23]. Multi version programming techniques focus on 

improving the fault tolerance of different versions of a 

program having the same specification [21]. They consist of 

three major groups which are design diversity, data diversity 

and hybrid techniques that combine the two previous ones 

(See Figure.2.). For further details about these techniques, 

their advantages and disadvantages, readers are advised to see 

Pullum [20] and Rizwan [22]. 

As presented in Figure. 2., most of these techniques are 

based around a common concept that is software redundancy 

that will be described in the following subsection. 

B. Software redundancy 

Redundancy is the basic concept of fault tolerance techniques 

and was firstly used in hardware systems by providing more 

physical copies of components like redundant processors, 

memories, buses, or power supplies in order to improve the 

reliability of basic components [21, 39]. 

• In software systems, software redundancy is defined as the 

duplication of state information or system function [14, 26]. 

For Dubrova [21], it is useful in detecting and correcting 

faults. In fact, software redundancy has different forms [26, 

27]: 

• Information redundancy: is related to the coding theory 

originally defined by Richard Hamming [33] and Claude 

Shannon [34]. It indicates the additional used information 

(bits) to represent a program state than it is required. 

Examples include parity code bit, error correcting codes, 

Hamming code and check sums [21]. 

• Functional redundancy: consists of using the same 

program specification to generate different algorithms or 

programs versions which perform the same functionality 

[27]. 

• Time redundancy: consists on repeating the execution of 

the failed process. For Pullum [20] and Dubrova [21], this 

type of software redundancy is not likely appropriate to be 

applied in real time applications and the other redundancy 

techniques are more appropriate for these applications. 

C. Redundancy applications 

As mentioned above, most of fault tolerance techniques are 

based on software redundancy. Literature shows that it is 

exploited for different applications [7]. Following are the most 

discussed ones: 

- In 1976, redundancy is exploited through N-version 

programming technique and results show that this 

approach is efficient to achieve fault tolerant systems [19]. 

This technique is also used to compare the probability of 

failure between single and N-version systems. 

- In 1990, redundancy is exploited for self-checking 

programs [24]. It is useful to check the own program’ 

behavior during execution [28]. 

- In 1991, redundant software systems configured in a 

N-version structure are used to improve reliability [29]. 

- In 2003, redundancy structured in mutation testing is 

exploited through the injection of faults in numerous 

program versions. Results show its aptness to reflect 

systems’ ability to tolerate faults [23]. 

- In 2009, redundancy is exploited to identify the code 

fragments having the same functionality based on the code 

semantic analysis. Results show the existence of 

functionally equivalent fragments having different syntax 

which leads to optimize the code and facilitate its 

understanding [30]. 

- In 2014, redundancy is exploited to identify the 

relationship between structural similarity, vocabulary 

similarity and method name similarity. Results show that 

the source code similarity cannot be always be reflected 

through these three concepts [31]. 

- In 2014, redundancy is exploited to reflect the ability of 

software systems to tolerate faults [13]. 

- In 2015, redundancy is also exploited to identify code 

fragments semantic similarity. Results show that it is 

possible to discriminate the minimally different code from 
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the truly redundant one in one side, and the low-level code 

redundancy from high-level algorithmic redundancy in the 

other side. 

- In 2018, Asghari et al. [27] proposed a method to detect 

transient faults in the processor core in order to improve 

real time multitask system’ fault tolerance based on 

information redundancy. 

To sum up, redundancy is useful in different applications as 

presented above. However, literature shows that there is a lack 

of studies focusing on its assessment [5]. So, as software 

metrics are widely discussed as quantitative measures of 

software quality attributes like complexity and cohesion [4], 

Mili et al. [13] proposed a suite of four semantic metrics to 

assess programs’ redundancy as it is shown in Figure.2. The 

objective is to reflect the ability of programs to tolerate faults 

and monitor their reliability. 

The key limitation of this suite is that is manually computed 

and theoretically presented. So, further experimental studies 

still required to demonstrate if the proposed metrics are useful 

as measures of program redundancy and how this redundancy 

may be exploited to reflect the program ability to tolerate 

faults [13]. The different metrics composing this suite are 

described in the following section. 

III. Software Metrics for Fault Tolerance 

Assessment 

This section presents the use of software metrics for fault 

tolerance assessment. So, we start by presenting a summarize 

of the well-defined syntactic and semantic suites as measures 

of various quality attributes. Then, we detail the proposed 

semantic metrics suite of Mili et al. [13] as redundancy 

measures. 

A. Software metrics for quality assessment 

Numerous syntactic and semantic metrics are proposed in 

literature to assess different quality attributes. 

Most of the proposed syntactic metrics are used to assess 

internal quality attributes. For instance, we can cite those 

proposed by Chidamber and Kemerer (C&K) [6], Li and 

Henry [8], Abreu et al. [9], Bansiya and Davis [32] and much 

others [36, 37]. These suites are proposed as measures of 

programs complexity, cohesion, inheritance, coupling, and 

much other OO attributes related to the program structure [2, 

39]. 

The proposed semantic metrics suites include those of 

Etzkorn and Delugash [4], Stein et al. [11], Cox et al. [35], 

Marcus and Poshyvanyk [10] and Mili et al. [13]. Compared to 

syntactic metrics, which are related to the program structure 

(attributes, number of methods, etc), semantic metrics depend 

on the program understanding through comments, identifier, 

concepts and concepts relationships. 

Most of the presented software metrics are used to assess 

internal attributes. However, the suite proposed by Mili et al. 

[13] aims to reflect the program ability to tolerate faults based 

on redundancy assessment. So, we present in the following 

subsection, the different metrics composing this suite. 

B. Redundancy-based semantic metrics suite 

Four basic semantic metrics are proposed by Mili et al. [13] to 

assess program redundancy. These metrics are namely state 

redundancy, functional redundancy, non-injectivity and 

non-determinacy: 

• State redundancy: is proposed to quantify the program 

information redundancy expressed in Shannon bits. It 

measures the excess of information in both initial and final 

program states. The main purpose of this metric is to help 

detect errors as one of the main fault tolerance phases [3]. 

For more details about the automated computing of this 

metric, readers are invited to see our previous work [15]. 

• Functional redundancy: is proposed to quantify the 

program redundancy that is the excess data of the output 

generated by the program function. The purpose of this 

metric is to help detect errors in one side, and to check the 

correctness of the program function in another side [13, 

14]. For more details about the automated computing of 

this metric, readers are invited to see our previous work 

[16]. 

• Non-injectivity: is proposed to assess program redundancy 

using the non-injectivity of this program. The 

non-injectivity expresses the amount (bits) of uncertainty 

do we have about the initial state if we know the final state. 

The purpose of this metric is to mask errors by producing a 

subsequent state that bears no trace of the error. 

• Non-determinacy: The non-determinacy metric (ND) 

reflects the program’ specification flexibility. It means the 

amount of information the program may use to tolerate 

faults without violating its specification. Thus, a program 

is determinant if it doesn’t tolerate faults; the final state of 

the program is always different from the expected one. A 

program is said non-determinant (has a non-deterministic 

specification) when it fails to compute its exact intended 

function and still satisfying the specification, so the final 

state may be equal to the expected one. Consequently, the 

non-determinacy metric is proposed to measure the extent 

to which a program may deviate from its intended behavior 

without violating its specification [13]. 

We recall that we focus in this study on the empirical 

assessment of the functional redundancy semantic metric. 

IV. Functional Redundancy Semantic Metric 

We describe in this section the main purpose of the functional 

redundancy semantic metric, its mathematical formulation as 

well as an illustrative example to clarify its purpose. 

The functional redundancy metric reflects the excess output 

data generated by a program function in order to verify the 

proper execution of the function [14]. 

Mathematically speaking, this metric is equated with the 

non-surjectivity of the program function which means that not 

all program’ outputs (final states) are mapped to at least one 

input (initial state) [13]. Hence, the functional redundancy of a 

program g on a space S is denoted by φ (g) and defined by: 

φ(g) = (H(S) − H(Y ))/H(Y )  (1) 

- H(S) is the state space of the program: the maximum value 

(size in bits) that the declared program variables may take, 
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- Y is the random variable (range or output space) of g 

defined as the set of final states of the program’s function, 

- H(Y) = H(σf), is the entropy of the output produced by g 

defined as the number of bits required to store the result of 

the program’ execution, 

- φ(g) is the functional redundancy of the program g. 

From the value of this metric, three possible interpretations are 

drawn [13, 14]. 

• if φ(g) = 0: there is no scope for checking any property 

since all bits are used, the input and output spaces are 

equal. 

• if 0 < φ(g) < 1: we can check part of the result against 

redundant information, 

• if φ(g) > 0: there are larger bits of redundancy when 

executing the program. 

As an illustrative example, consider two functions F1=x and 

F2=x%4, and B5, the input range that is a set of natural 

numbers represented in a word of five bits as shown in 

Figure.3. 

 
Figure 3. Illustrative Example of functional redundancy 

metric 

Figure.3 shows that for the first function, the possible output 

range is [0…31], hence all five bits are used and then there is 

no redundancy. However, for the second function, the output 

range is [0, 1, 2, 3]. In other words, only two bits of 

information are needed, whereas the three other ones are 

redundancy bits [14]. 

V. Empirical Validation of Functional 

redundancy metric 

This section presents the validation methodology, the data 

collection and the computing process of the functional 

redundancy metric. 

A. Validation methodology 

As presented in the previous sections, the functional 

redundancy semantic metric (FR) is proposed to assess 

programs redundancy in order to help detecting errors and to 

check the correctness of the program function output [13]. 

To validate this hypothesis, we are based on the following 

research questions (RQ): 

• RQ1: Does the functional redundancy metric is useful to 

measure programs redundancy? 

• RQ2: Does the functional redundancy semantic metric 

could be used to detect errors? 

B. Data collection 

In order to answer the previous RQs, we will perform two main 

experiments. For each experiment, we resort to Java language 

and the Eclipse development environment (version: Neon.3 

Release (4.6.3)) to automatically generate the presented 

functional redundancy metric. 

1) Experiment 1: Functional redundancy metric for 

redundancy assessment (RQ1) 

This experiment aims to demonstrate whether the functional 

redundancy semantic metric can be considered as quantitative 

measure of program redundancy expressed through the excess 

output data generated by this program function. 

In this experiment, we consider five programs which are the 

addition of two integers (Sum), the Greatest Common Divisor 

(GCD), the average of two integers (AVG), the Power 

program (Power) and the maximum value program 

(MaxValue). So, to answer the first RQ (RQ1), we proceed as 

follows: 

- We perform 10 different executions for each program. In 

each execution, we consider 1000 random input values but 

we change each time the range of these inputs. So: 

o We start by using 1000 random inputs that 

range from (2^1+1) to 2^3. 

o We increase the range of inputs by adding in 

each new execution, 3 new bits. So, in the 

second execution, the input values will 

range from (2^3+1) to 2^6. 

o In the third execution, we add 3 other bits, 

so, the input values will range from (2^6+1) 

to 2^9. 

o In the fourth execution, 3 other bits are 

added, the input values will range from 

(2^9+1) to 2^12. 

o In the fifth execution, 3 other bits are added, 

the input values will range from (2^12+1) to 

2^15. 

o We proceed in the same way for the other 

executions by adding in each time 3 new bits. 
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P1 (Faulty version): 

{int x, x1, x2, x3, x4, x5;  

1 x= rand.nextInt(100)+1; 

2 x=x*x1; 

3 x=2*x+2*x3; 

4 x=x/x1; 

5 x=x4+x4; 

6 x=x*x5; 

} 

P (correct version): 

{int x, x1, x2, x3, x4, x5;  

1 x= rand.nextInt(100) + 1; 

2 x=x+x1; 

3 x=2*x+2*x3; 

4 x=x%x1; 

5 x=x+x4; 

6 x=x*x5; 

} 

So, for the final execution, the 1000 random 

input values will range from (2^27+1) to 2^30. 

- For each experiment, we generate the FR metric as well as 

the used entropy of the program output which is the 

number of bits used to store the output value. We aim to 

identify the relationship between these two variables. 

The process of the automatic generation of FR metric consists 

of different steps. The main steps are presented in Figure. 4 

that details the different steps for the automatic generation of 

this metric for the Power program. Concerning the other 

programs, the same steps are used: 

 Figure 4. A part of functional redundancy computing for 

the Power program 

This process consists of the following steps: 

• First, the state space H(S) of each program as the entropy 

(bits) of the declared variables is computed. For instance, 

for the Power program, the state space is computed as 

shown in lines 36 in Figure.4. 

• Second, we use Equation (1) to compute the final state 

space H(Y) we denote by FS that is the number of bits 

(entropy) required to store the result of the program’ 

execution. For instance, for the Power program, this value 

is computed as shown in line 40 in Figure.4. 

• Third, the functional redundancy metric is deduced using 

Equation (1). For instance, for the Power program, it is 

computed as it is shown in line 42 of Figure. 4. The same 

steps are used to compute this metric for the other 

programs considering the variables used for each one. 

The structure of the generated data sets for each program is 

presented in Table 1: 

Table 1. Structure of the generated Data sets for experiment 1 

Entropy FR metric 

  

The data sets details are available for readers at this link: 

https://sites.google.com/view/fr-semantic-metric-data-sets/ac

cueil. The results analysis will be performed in section VI.A. 

2) Experiment 2: Functional redundancy metric for 

Error detection (RQ2) 

This experiment aims to demonstrate whether the functional 

redundancy can be considered as an error detection indicator. 

In this experiment, we consider two P and P1 programs. P is 

a correct program on which faults are injected to obtain a new 

version of this program P1 (see coloured statements).  

The injected faults are not related to the program syntax but 

they have an impact on its functionality: 

 

 

So, to answer RQ2, we proceed as follows: 

- We automatically generate the FR semantic metric for the 

two P and P1 programs using 1000 random inputs. 

- We compare the results of the two programs, the objective 

is to identify if the FR metric will be different between P 

and P1 programs. 

The structure of the generated data sets is presented in Table 2: 

Table 2. Structure of the generated Data sets for experiment 2 

FR metric for P (Correct 

version) 

FR metric for P1 (Faulty 

version) 

   

The data sets details are available for readers at this link: 

https://sites.google.com/view/fr-semantic-metric-data-sets/ac

cueil. The results analysis will be performed in section VI.B. 

VI. Data Analysis and Discussion 

This section describes the data analysis and discussion for 

each of the presented experiments.  

A. Experiment 1: Functional redundancy metric for 

redundancy assessment (RQ1) 

 Based on the generated data sets of the first experiment 

represented in Table 1, we aim to identify whether the FR 

semantic metric is useful to assess the excess data (redundancy) 

of a program output. So, we resort to a statistical methodology 

and we proceed as follows: 

- We start by data standardization: this step is required since 

the FR and the used entropy variables have different units. 

So, we use the STATA tool to perform the standardization 

of our data sets. 

- We perform the normality tests to identify the appropriate 

correlation test to be used. For more details, readers are 

referred to [15]. 

- We perform the Spearman correlation test based on the 

following hypothesis: 

o H0: ρ = 0 (null hypothesis) there is no 
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significant correlation between FR metric 

and the used entropy. 

o H1: ρ ‡ 0 (alternative hypothesis) there is a 

significant correlation between FR metric 

and the used entropy. 

The results of Spearman correlation for the different programs 

are presented in Table 3: 

Table 3. Structure of the generated Data sets for experiment 1 

Entropy FR metric 

  

Table 3 shows that most of the correlation coefficients are 

strong and negative for the different programs. This indicates 

that there is a strong negative correlation between the 

functional redundancy and the used entropy of the program 

output. In other words, each time the used entropy increases, 

the FR metric that measures the redundancy of this program 

output will tend to decrease. Consequently, it is possible to 

answer the RQ1 which suggests that the FR measures the 

redundancy of the program function. These results are also 

summarized in Figure. 5. 

 
Figure 5. Correlation between FR and the used entropy 

Figure. 5 shows that for the different programs, the output 

redundancy computed by the FR metric as the excess output 

data generated by these programs function is negatively 

correlated by the used entropy of this output. So, we state that 

the FR metric is useful to quantitatively measure programs 

redundancy. 

B. Experiment 2: Functional redundancy metric for error 

detection (RQ2) 

To perform the analysis of the generated data sets of the 

second experiment presented in Table 2, we compare the FR 

metric for the two P and P1 programs presented in section 

V.B.2. Results are illustrated in Figure.6: 

 
Figure 6. Comparison of FR metric between P and P1 

programs 

Figure.6 shows that there is a difference between the values of 

the FR metric between the two programs. So, for the correct 

program, the value of this metric is 14.64, whereas, for P1, its 

value is 9.54. This difference is caused by the injected faults. 

Hence, for developers and testers, the FR metric is useful to 

indicate whether their programs are error-free. Consequently, 

it is possible to answer the second RQ (RQ2) and we can note 

that the FR metric is useful as an error detection indicator. 

C. Overall analysis of the results 

The functional redundancy semantic metric is proposed as 

quantitative measure of programs redundancy on one side and 

as an error detection indicator on the other side. The 

experimental study we performed, confirms these hypotheses. 

Hence, we stated that the functional redundancy metric is 

useful to compute the excess output data generated by a 

program function. This because the FR metric is negatively 

correlated with the used entropy of this output. Moreover, this 

metric is useful for developers and testers since it indicates 

whether their programs are error-free. 

VII. Conclusion and Perspectives 

The presented study discusses three main concepts which are 

software fault tolerance, redundancy and software metrics for 

redundancy assessment. 

The literature performed in this paper shows that fault 

tolerance is one of the quantifiable attributes that helps to 

achieve reliable and dependable software systems. Most of 

fault tolerance techniques are based on redundancy. The 

assessment of redundancy is necessary required to reflect the 

ability of software programs to tolerate faults. Moreover, 

considerable attention has been paid to the use of semantic 

metrics as quantitative measures of programs redundancy. 

Among these metrics, the functional redundancy semantic 

metric is defined to measure programs redundancy as the 

excess output data generated by a program function. On 

another hand, this metric is proposed to be used as an error 

detection indicator based on the assessed programs 

redundancy. However, the key limitation of this metric is that 

it is manually computed for procedural programs and only a 

theoretical basis was presented for it. To solve this problem, 

we started by proposing an automated way to compute it for 

different java programs. 
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Based on a robust statistical approach, we perform the 

analysis of the generated data sets, different interpretations are 

identified. First, for developers, an automatic calculation of 

this metric is necessary required. Additionally, it is an 

important step that helps to construct an empirical data base of 

this metrics’ values. Then, we demonstrate that the functional 

redundancy metric is useful as a quantitative measure of 

programs redundancy. Finally, we demonstrate that this metric 

is useful as an error detection indicator based on programs 

redundancy assessment. 

Even though the presented benefits presented in this work 

could be enhanced. As future work, we envision to focus on 

extending our experiment to incorporate open source java 

programs and to study the use of these metrics as measures of 

different quality attributes like defect density. 
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