
Journal of Information Assurance and Security.

ISSN 1554-1010 Volume 15 (2020) pp. 034-043

© MIR Labs, www.mirlabs.net/jias/index.html

MIR Labs, USA

Circular Queue Based Data Encryption Algorithm

Using 512 Random Bits

Kamal Kumar Gola1, Manika Gupta2 Gulista Khan3 and Pankaj Rajput4

1 Faculty of Engineering, TMU, Moradabad, 244001, India.

kkgolaa1503@gmail.com

2 College of Computing Sciences and Information Technology, TMU, Moradabad, 244001, India.

manikagupta343@gmail.com

3 Faculty of Engineering, TMU, Moradabad, 244001, India.

gulista.khan@gmail.com

4 College of Computing Sciences and Information Technology, TMU, Moradabad, 244001, India.

pankaj.rajput.552200@gmail.com

Abstract: Modern technology is developing in a very linear

way. Security and Privacy issues are of most concern nowadays.

With this developing technology privacy and data security has

become a very major aspect. To prevent data piracy, many

different types of encryption techniques and security algorithms

have been developed, which ensures data security. We use

authentication so that we can easily identify who is using and

accessing our data. We use password system in authentication

that contains characters and integers that needs to be encrypted

with the help of proper algorithm. In present scenario we cannot

say that our data is fully secure. We always need new approaches

to prevent our data piracy. Here, this work proposes a low

complexity encryption and decryption technique based on

random bits and circular queue to encrypt the plain text by

making changes in their ASCII values and then shifting them

according to random numbers generated. Above all random bits

are ever changing bits, which makes it very hard to decrypt the

cipher text without knowing the correct random bits generated.

Keywords: Circular queue, 512 random-bits, ASCII values,

encryption and decryption.

I. Introduction

Information, according to its definition is ‘The meaningful data

derived from raw facts’ but to us, information is not merely a

meaningful data but it’s our personal data, official and private

data, our bank account details, and much more. And with the

modernization and computerization of physical information

into digital data, everything in our computers, mobile phones

and tablets has become important and sensitive to us. While

sending some message or information to someone, we can’t

afford to disclose or modify our sensitive data, it is imperative

to secure the information in our systems and in the network as

well from any kind of intrusion, forging or modifications. So,

to secure the information, there is a mechanism that can

transform a readable message (plaintext) to an unreadable form

of message (ciphertext) and that mechanism is called as

‘Encryption’. The ciphertext can be transformed back into the

plaintext simply by reversing the Encryption mechanism, which

is known as ‘Decryption’. The process of encryption of

encryption and decryption is achieved by some sort of codes, in

[1] the authors have proposed a cyclic codes of length pn over

Zp3 that can be used in encryption process.

In modern world, Data security is a major aspect to deal with.

Cryptography is a technique to prevent unauthorized access to

information through codes so that only person intended for

information can process it. The prefix “crypt” means “hidden”

and suffix “graphy” means “writing” [2]. To prohibit data-

piracy, various cryptography, watermark and stenography

algorithms have been adopted. These algorithms are being

used in various fields like cryptography firm RSA, network

security etc. [3] [4]. The proposed algorithm is based on

symmetric key encryption that uses circular queue, 512

random bits, which are generated on the basis of whether the

random number is even (1) or odd (0), total count of plain text

and the ASCII values of inserted plain text. There are three

steps of encryption namely key generation, encryption and then

shifting of the encrypted text that will be considered as the final

encryption of the inserted given plain text.

In first part of encryption 512 bits are generated that are stored

into 3 different arrays of various sizes, which will further work

as the keys for encryption and decryption of the text. Secondly,

we will enter the plain text and store the characters of plain text

in a circular queue and then we will start our encryption based

on ASCII values of the plain text and 512 generated random

bits [5]. Thirdly, shifting of encrypted text takes place based on

random numbers and finally we will receive our fully encrypted

cipher text. For decryption the same key and the same process

is used in reverse direction to get the plain text from the cipher

text [6].

mailto:kkgolaa1503@gmail.com
mailto:manikagupta343@gmail.com
mailto:gulista.khan@gmail.com
mailto:pankaj.rajput.552200@gmail.com

Circular Queue Based Data Encryption Algorithm Using 512 Random Bits 35

II. Related Work

Using a circular queue gives us the advantage to create a

cipher text which is very difficult to decipher. In [7] the authors

proposed an algorithm based on shifting and replacing of the

circular through bi-column and bi-row to attain more security.

Random numbers are used to perform the shifting operation

between columns and rows and that leads to increase the

complexity of cipher text decryption. In [8] the authors have

used the shifting operation to perform the encryption and

decryption of the given plain text. In this algorithm data is

encrypted using three circular queues which performs shifting,

swapping and XORing on the basis of the generated random

bits. In [9] an algorithm is proposed with twice the encryption

and twice the decryption that means we encrypt the plain text

two times and to decrypt the generated encrypted text we have

to use the decryption process twice. In [10] the authors firstly

converts the given text into their respective ASCII values and

then further check whether the value is prime or not and then

the prime and random numbers are chosen and form the binary

format where ‘0’ shows a prime number responsible for

shifting row or column upside or downside. In [11] the author

proposed an algorithm that encrypt and decrypt the plaintext

based upon the binary conversion. In this algorithm binary

numbers are converted from ‘0’ to ‘1’ and ‘1’ to ‘0’.

Authors in [12] examined on symmetric encryption in which

the content to be encrypted is first transformed into

encapsulation cipher which cannot be recognized by cipher

algorithm. Authors in [13] proposed an algorithm in which

plain text is first conveyed in circular queue, transformed into

8bit ASCII values, XORed with keyword letter and then

converted into respective decimal numbers which is further

translated into Fibonacci format to be sent as binary numbers.

In [14], authors proposed an algorithm that uses 128/256 bits

encryption algorithm that will execute two layer encryption to

enhance security and effectiveness.

III. Proposed Algorithm with Flowchart

Step 1: Generate 512 random numbers using rand () function.

Step 2: If (random number == even), then bit value =1, else, bit

value = 0

Step 3: A series of 512 bits is computed.

Step 4: Divide the keys into three parts K1 with 256 bits, K2

with 128 bits and K3 with 128 bits. After splitting the keys into

three parts we check whether the first bit of K1 is either 1 or 0.

If it is 0 then we add 1 in the length of the number count of the

plain text and, if it is 1 then we add 2 in the length of the

number count of the plain text. The number count obtained will

become the size of the circular queue.

Step 5: Obtain the plain text and count the number of

characters (N) in it including the blank-spaces.

Step 6: Check first bit of key K1.

Step 7: If key_K1 [0] =0, N=N+1, else, N=N+2.

Step 8: Size of circular queue = N.

Step 9: Insert plain text into the queue.

Next we check the bit value from the key K1 to determine the

direction to count the position of the letters of the plain text in

the circular queue. If the bit value of key K1 is ‘1’ we will

count the position of letters in clockwise direction else if it is

‘0’ count the position of letters in anticlockwise direction.

Step 10: Check bit value from key K1 to determine the

direction to count the position of letters in the circular queue.

Step 11: Obtain the ASCII value (AV) of the letters in the

queue.

Step 12: For i=0 to 255 If (key_K1 [i] ==1), then count the

position of a letter in clockwise direction within the queue, else,

count the position in the anticlockwise direction.

Step 13: Compute new ASCII value (NAV) =AV + C for

every letter and substitute every letter with the letter obtained

by value NAV.

Step 14: Repeat step 10, 11, 12 & 13 until the whole text is

converted. Before getting the position count of the letters of

the plain text in the queue, we first get the ASCII value of the

letters. When we get the ASCII values and position count of

the letters we add both of them (AV + position count) and

obtained a new ASCII value for every letter. We then get the

new letter assigned to that ASCII value. Replace that old letter

with the new one that we have obtained with the help of new

ASCII value. Now, we will check the bit values from the key

K2 to determine the number of shifts for the queue. After that

we will check the bit values from key K3 to determine the

direction of shifts (whether clockwise or anti clockwise). If the

first bit key K3 is 0 then we shift the letters in clockwise

direction else in anti-clockwise direction. Lastly, we extract the

obtained cipher text from the circular queue, which is required

encrypted text.

Step 15: Check values of key K2 to determine number of shifts

(count) for the queue.

Step 16: Check values of key K3 to determine direction of

shifts (clockwise/anti clockwise). For i=0 to count, If (key_K3

[i] ==0), then shift the letters in clockwise direction, else, shift

the letters in anti -clockwise direction.

Step 17: Shift the letters in the circular queue using the shift

offset and shift direction obtained from step 15 & 16.

Step 18: Extract the cipher text from the circular queue.

For decryption, we insert the cipher text in the circular queue.

Now we check the bit values from key K3 to determine the

direction of shifts(clockwise / anti-clockwise) and if the first bit

of K3 is 0 we shift the letters in anti-clockwise direction else in

clockwise direction.

Step 19: Insert cipher text in circular queue.

Step 20: Go to step 15.

Step 21: Check bit values from key K3 to determine direction

of shifts (clockwise/anti clockwise).

For i=0 to count, If (key_K3 [i] ==0), then shift the letters in

anti-clockwise direction, else, shift the letters in clockwise

direction.

Step 22: Shift the letters in the circular queue using the shift

offset and shift direction obtained in 20 and 21. Repeating the

steps of insertion and encryption compute the new ASCII

values of the cipher text for every letter and substitute every

letter with the letter obtained by the new ASCII value, and then

we finally extract the plain text from the circular queue.

Step 23: Go to step 11 & 12.

Step 24: Compute new ASCII value (NAV) = AV - C for

every letter and substitute every letter with the letter obtained

by the value NAV.

 36

Step 25: Extract the plain text from the circular queue.

Flowchart 1: Key Generation Process

Circular Queue Based Data Encryption Algorithm Using 512 Random Bits 37

Flowchart 2: Insertion of Plaintext in Circular Queue

 38

Flowchart 3: Encryption and shifting

Stop

 Start

Inset plain text into circular queue

Check bit value from key k1 for every

letter

If bit value

of k1 is 1

Count the position of letters in clockwise

direction

New ASCII value = old ASCII value of

character + position count in queue

Replace the letter with newly obtained

ASCII value

Count the position of letters in Anti-

clockwise direction

Count number of 1’s in key K2 to find

offset

Check bit value from key K3 for

direction of shift

If bit value

of K3 is 0

Shift the letters in clockwise direction

Shift the letters in anticlockwise direction

Output will be Extracted

cipher text from queue

Circular Queue Based Data Encryption Algorithm Using 512 Random Bits 39

IV. Implementation

Firstly we get the text from the user. In this process we’ll be

using the text “HELLO TMU FOECS”. Count the number of

characters in the given text. In this example the count of the

given characters including spaces is 15. Generate K [512]

random bits using rand () function and divided them into three

parts namely K1 [258], K2 [128] and K3 [128]. For further

execution check whether the first bit of K1 is ‘0’ or ‘1’. If first

bit of key K1 is 0, add 1 to the number count of the characters

and if it is 0, add 2 to the number count of the characters. In

this example we have 15 characters in the given string and let

the first bit of K1 be '0' so add 1 in the length of the string and

create a queue of length 16 as shown in figure 1.

Now store the string in the queue and get their ASCII values.

After getting the ASCII values of every character start the

encryption of the plain text. Now using 256 bits of key k1, we

check the bit values to count the position of every character in

the queue on the basis of K1’s bit. If the bit value of K1 is ‘1’

we count the position of the character in clockwise direction

and if it is ‘0’ we count the position in anticlockwise direction.

For example the first bit in the given example is ‘0’ so we count

the position of ‘H’ in anticlockwise direction which is 1, then

we will add 1 to the ASCII value of 'H' which is 72, the new

ASCII value attained will be 73 which is the ASCII value of 'I',

so the letter 'H' will be substituted by 'I'. Similarly, for the given

message ‘HELLO TMU FOECS’ new encrypted message will

be I T Z Y T + ^ U ^ ' Q [I F U ® Refer to table 1.

Letters
ASCII

VALUE

Bit

from K2

Counted

number
New ASCII

value New Letter

H 72 0 1 73 I

E 69 1 15 84 T

L 76 1 14 90 Z

L 76 1 13 89 Y

O 79 0 5 84 T

Space 32 1 11 43 +

T 84 1 10 94 ^

M 77 0 8 85 U

U 85 0 9 94 ^

space 32 1 7 39 ‘

F 70 0 11 81 Q

O 79 0 12 91 [

E 69 1 4 73 I

C 67 1 3 70 F

S 83 1 2 85 U

unknown unknown 1 1 unknown unknown

Table 1. Substitution Encryption Table

New ASCII value = ASCII value of character + position

count in Queue

After getting position of every character in the queue we find

the new ASCII value by adding ASCII value with the position

count and replace the previous letter with the new letter.

After replacing all values with the same process we get a new

circular queue which is shown in figure 2. Now 128 bits of key

K2 will be used for the second process of the encryption which

is determining the number of shifts in letters of the generated

cipher text.

For shifting of the cipher text inside the queue we will count

how many number of 1’s arises in the Key K2. In this example

that we’ve used to explain the process there are 8 1’s inside the

K2 key so we shift the cipher text 8 times. The binary values in

128 bits of key k3 will be used to decide the direction of shift in

the circular queue. If the bit value of k3 is ‘1’ then we shift the

text in anticlockwise direction and if it is ‘0’ then we shift it in

clockwise direction. Let the first bit of k3 be '0', then we will

shift the letters 8 position in clockwise direction.

Similarly, if second bit of key k3 is '1', then letters in the

queue will be shifted to 8 positions in anticlockwise direction.

Repeating same process of shifting for k3 [2] and k3 [4], we

get queue given in figure. 3 and for k3 [3] and k3 [5], we get

the same queue as shown in figure. 4. After this process of

encryption, a new queue with fully encrypted cipher text is

obtained. We will then extract the cipher I F U ® I T Z Y T + ^

U ^ ' Q[

 40

For decryption of the cipher text the same process in reverse

format must be executed to get the plain text again. 128 bits

from the key K2 and 128 bits from K3 will be used to put the

characters to their original positions. In this process firstly we

count how many 1’s are there in the Key K2 and count their

occurrence. Then we check the first bit of the Key K3 to

determine the direction of the shifting of the queue. If the bit is

'1' then the letters in the queue will move in clockwise direction

and if it is '0' then it will move in anticlockwise direction.

For further decryption we use the Key K1 to get the original

plain text. We count the position of the character according to

the bits of Key K1. If bit value is '1', we count the position in

anticlockwise direction and if it is '0', then count the position of

letters in clockwise direction. Now, subtract the position count

of the character with the ASCII value of the character and

replace the letters with the letters attained by new ASCII value.

In this way, we apply the same process to every character we’ll

get our original plain text. Refer to table2.

New letter

New ASCII

value

Bit

from K2

Counted

number

Original

ASCII

VALUE

Original

letters

I 73 0 1 72 H

T 84 1 15 69 E

Z 90 1 14 76 L

Y 89 1 13 76 L

T 84 0 5 79 O

+ 43 1 10 32 Space

^ 94 1 10 84 T

U 85 0 8 77 M

^ 94 0 9 85 U

‘ 39 1 7 32 Space

Q 81 0 11 70 F

[91 0 12 79 O

I 73 1 4 69 E

F 70 1 3 67 C

U 85 1 2 83 S

unknown unknown 1 1 unknown unknown

Table I1. Substitution Decryption Table

Generated 512 bits:

0 1 1 1 0 1 1 0 0 1

0 0 1 1 1 1 1 0 1 0

1 1 0 1 0 0 1 0 0 1

0 1 0 0 0 1 1 1 1 0

1 1 1 1 1 1 0 1 1 1

0 0 0 0 1 1 0 1 0 1

1 0 0 0 0 0 0 0 1 0

0 0 1 0 0 0 1 1 0 0

1 0 1 0 1 1 1 1 1 1

1 1 0 1 1 1 0 0 1 0

0 0 0 0 1 0 1 0 0 0

1 0 0 0 1 1 1 0 0 0

0 0 0 1 0 1 0 0 0 0

1 0 0 0 0 1 1 1 0 1

1 0 1 0 0 1 0 1 1 0

0 1 0 1 0 0 0 1 1 0

0 1 0 1 0 0 1 0 1 0

0 0 0 1 0 1 0 1 0 1

1 1 1 1 1 1 0 1 0 1

0 1 0 1 1 0 1 1 0 0

1 0 0 0 1 0 1 0 1 0

0 1 0 0 0 1 1 0 1 1

0 0 0 0 0 0 0 0 0 1

0 0 0 1 0 0 1 1 0 0

1 0 0 1 1 1 1 1 1 1

1 0 1 0 0 0 0 1 0 0

1 0 0 1 1 0 0 1 1 1

1 0 1 1 1 0 1 1 0 0

0 0 0 1 0 1 0 0 0 1

1 1 1 1 1 0 1 1 0 0

1 1 1 1 0 1 1 1 0 1

0 1 1 1 0 1 0 1 0 1

0 0 1 1 0 1 0 0 0 0

0 0 0 0 0 1 0 1 0 1

0 1 1 1 1 0 1 1 0 0

0 0 0 1 1 1 1 1 0 0

0 1 1 1 1 1 1 1 0 1

1 1 1 1 0 1 0 1 1 0

0 0 0 0 0 0 1 0 1 0

0 0 0 0 0 0 0 0 0 0

1 0 0 1 1 0 0 0 0 0

0 1 0 1 1 0 0 0 1 1

0 0 1 1 1 1 1 0 0 0

1 1 1 0 0 1 0 0 0 1

0 1 1 1 1 0 0 0 0 1

1 1 1 1 0 0 0 1 0 0

0 0 1 1 0 0 1 0 1 0

0 1 1 0 1 1 0 1 1 1

1 0 0 1 0 0 1 0 0 0

0 1 0 0 0 1 1 0 1 0

Circular Queue Based Data Encryption Algorithm Using 512 Random Bits 41

1 0 0 0 0 0 0 0 1 1

0 1

256 bits of k1 are:

0 1 1 1 0 1 1 0 0 1

0 0 1 1 1 1 1 0 1 0

1 1 0 1 0 0 1 0 0 1

0 1 0 0 0 1 1 1 1 0

1 1 1 1 1 1 0 1 1 1

0 0 0 0 1 1 0 1 0 1

1 0 0 0 0 0 0 0 1 0

0 0 1 0 0 0 1 1 0 0

1 0 1 0 1 1 1 1 1 1

1 1 0 1 1 1 0 0 1 0

0 0 0 0 1 0 1 0 0 0

1 0 0 0 1 1 1 0 0 0

0 0 0 1 0 1 0 0 0 0

1 0 0 0 0 1 1 1 0 1

1 0 1 0 0 1 0 1 1 0

0 1 0 1 0 0 0 1 1 0

0 1 0 1 0 0 1 0 1 0

0 0 0 1 0 1 0 1 0 1

1 1 1 1 1 1 0 1 0 1

0 1 0 1 1 0 1 1 0 0

1 0 0 0 1 0 1 0 1 0

0 1 0 0 0 1 1 0 1 1

0 0 0 0 0 0 0 0 0 1

0 0 0 1 0 0 1 1 0 0

1 0 0 1 1 1 1 1 1 1

1 0 1 0 0 0

128 bits of k2 are:

0 1 0 0 1 0 0 1 1 0

0 1 1 1 1 0 1 1 1 0

1 1 0 0 0 0 0 1 0 1

0 0 0 1 1 1 1 1 1 0

1 1 0 0 1 1 1 1 0 1

1 1 0 1 0 1 1 1 0 1

0 1 0 1 0 0 1 1 0 1

0 0 0 0 0 0 0 0 0 1

0 1 0 1 0 1 1 1 1 0

1 1 0 0 0 0 0 1 1 1

1 1 0 0 0 1 1 1 1 1

1 1 0 1 1 1 1 1 0 1

0 1 1 0 0 0 0 0

128 bits of k3 are:

0 0 1 0 1 0 0 0 0 0

0 0 0 0 0 0 1 0 0 1

1 0 0 0 0 0 0 1 0 1

1 0 0 0 1 1 0 0 1 1

1 1 1 0 0 0 1 1 1 0

0 1 0 0 0 1 0 1 1 1

1 0 0 0 0 1 1 1 1 1

0 0 0 1 0 0 0 0 1 1

0 0 1 0 1 0 0 1 1 0

1 1 0 1 1 1 1 0 0 1

0 0 1 0 0 0 0 1 0 0

0 1 1 0 1 0 1 0 0 0

0 0 0 0 1 1 0 1

Enter any text HELLO TMU FOECS

No. of letters= 15

Since first bit of k1 is 0: N = 16

Elements in queue are: H E L L O T M U F O E C S

1. Encryption

2. Decryption

3. Exit

Enter choice: 1

k1 0 A 1

k1 1 C 15

k1 1 C 14

k1 1 C 13

k1 0 A 5

k1 1 C 11

k1 1 C 10

k1 0 A 8

k1 0 A 9

k1 1 C 7

k1 0 A 11

k1 0 A 12

k1 1 C 4

k1 1 C 3

k1 1 C 2

k1 1 C 1

I T Z Y T + ^ U ^ ' Q [I F U �

No. of 1 in k2 = 8

k3 0 C

k3 0 C

k3 1 A

k3 0 C

k3 1 A

k3 0 C

k3 0 C

k3 0 C

Encrypted text is I F U � I T Z Y T + ^ U ^ ' Q [

1. Encryption

2. Decryption

3. Exit

Enter choice: 2

No. of 1 in k2 = 8

Shifting in opp. direction: I T Z Y T + ^ U ^ ' Q [I F U �

Decrypted text is H E L L O T M U F O E C S

1. Encryption

2. Decryption

3. Exit

Enter choice: 3

V. Results and Discussions

On comparing our algorithm with the previous one’s we get to

know that our proposed algorithm takes less time to execute i.e.

the compilation time of our proposed algorithm is much less

than previously proposed or defined algorithms. In this

comparison we have used RSA, RS4, Blowfish, AES and our

proposed algorithms. Data is collected by implementing all

algorithms in Dev C++ language using all standard

specifications given in algorithm. All the algorithms are

implemented on three different hardware systems to compare

their encryption/decryption speed using different memory sizes

(32, 64, 128, 256 and 512) kb. According to the result

proposed algorithm is more efficient than previous ones. To

compare algorithm’s security we’ve used DES and AES

 42

algorithms because they both uses 64 bit and 128 bit key

system in their algorithm for encryption but in our proposed

algorithm we are using a 512 bit key which makes it more

complex for anyone to decrypt it once it is encrypted.

VI. Conclusions

The goal of cryptography is to ensure the preservation of

information. This algorithm provides a method to encrypt the

plain text and accordingly decrypt it. This algorithm is

implemented using arbitrary numbers, circular queue, and a

technique for encryption and decryption of data. Here, we have

worked upon 32-bit release Dev C++ software. We have

generated 512 random numbers using rand () function and

further divided them into three parts. In this we have inserted

the plain text into the circular queue and applied the

substitution encryption method and encrypted the plain text

into cipher text by incrementing their ASCII values. Further

applying the shifting method we have converted plain text,

which is harder to be decrypt-ed. This algorithm is being

proposed to make the passwords or the plain text more secure,

so that cyber-crime or cyber piracy could not take place on any

of the important and valuable data. In future, cryptography will

become more vital. On comparing we found that this proposed

algorithm uses less number of lines of code and has less

complexity as compared to other algorithms and our proposed

algorithm also provides less security issues. Henceforth, we

conclude that this proposed algorithm can be used to save our

data or to protect us from all cyber piracy as it has less

complexity and is more secure for all types of passwords.

References

[1] Cyclic codes of length pn over Zp3, Kuwait Journal

of Science, Kuwait University, pp 15-24, 2016.

[2] Gola K.K., Khan G., Joshi A., Rathore R. (2020)

KKG-512: A New Approach for Kryptos Key

Generation of Size 512 Bits Using Plaintext. In:

Singh Tomar G., Chaudhari N., Barbosa J.,

Aghwariya M. (eds) International Conference on

Intelligent Computing and Smart Communication

2019. Algorithms for Intelligent Systems. Springer,

Singapore.

[3] Kamal Kr. Gola, Bhumika Gupta and Zubair Iqbal.

Article: Modified RSA Digital Signature Scheme

for Data Confidentiality. International Journal of

Computer Applications 106(13):13-16,

November2014.

[4] Zubair Iqbal, Kamal Kr. Gola, Bhumika Gupta and

Manisha Kandpal. Article: Dual Level Security for

Key Exchange using Modified RSA Public Key

Encryption in Playfair Technique. International

Journal of Computer Applications 111(13):5-9,

February2015.

[5] Gola K.K., Sharma V., Rathore R. “SKT: A New

Approach for Secure Key Transmission Using

MGPISXFS”. Information Systems Design and

Intelligent Applications. Advances in Intelligent

Systems and Computing, Vol 433. 2016, Springer,

New Delhi.

[6] Gulista Khan, Bhumika Gupta, Gola K.K. MDS3C:

Modified Digital Signature Scheme for Secure

Communication. International Conference on

Intelligent Communication, Control and Devices.

Advances in Intelligent Systems and Computing,

Vol 479, 2017.

[7] Wu, Suli, Yang Zhang, and Xu Jing. "A Novel

Encryption Algorithm based on Shifting and

Exchanging Rule of bi-column bi-row Circular

Queue", IEEE International Conference on

Computer Science and Software Engineering, Vol.

3. , 2008.

[8] Amounas, Fatima. "An Elliptic Curve Cryptography

based on Matrix Scrambling Method", IEEE

International Conference on Network Security and

Systems (JNS2), 2012.

[9] S. S. D. Pushpa R. Suri, "A Cipher based on

Multiple Circular Arrays", International Journal of

Computer Science Issues (IJCSI), Vol. 10, No. 5,

pp. 165-175,2013.

[10] Merkle, Ralph C., and Martin E. Hellman. "On the

Security of Multiple Encryption", Communications

of the ACM, Vol. 24, No.7, 465-467, 1981.

[11] Kanika Sharma and Nischay Bahl, Taxonomy of

CryptographyTechniques for Network Security,

International Journal of Engineering and Computer

Science, ISSN: 2319-7242, Volume 5 Issue 8

August 2016, Page No.17787-17793.

[12] N. Varol, F. Aydoğan and A. Varol, "Cyber Attacks

Targetting Android Cellphones," in The 5th

International Symposium on Digital Forensics and

Security (ISDFS 2017), Tirgu Mures, 2017.

[13] K. Harini, N. Pravallika, K. Sashi

Rekha,“Enhancement of Data Security using

Circular Queue Based Encryption Algorithm,” in

International Journal of Innovative Technology and

Exploring Engineering (IJITEE) ISSN: 2278-3075,

Volume-8 Issue-12, October 2019.

[14] Gayatri Kapil1 , Alka Agrawal1 , Abdulaziz

Attaallah2 , Abdullah Algarni2 , Rajeev Kumar1

and Raees Ahmad Khan1,”Attribute based honey

encryption algorithm for securing big data: Hadoop

distributed file system perspective,” in peerj journal,

2020.

Circular Queue Based Data Encryption Algorithm Using 512 Random Bits 43

Author Biographies

Kamal Kumar Gola is working as Assistant

Professor in Faculty of Engineering,

Teerthanker Mahaveer University,

Moradabad, India. He received his B.Tech.

Degree from Moradabad Institute of

Technology in Computer Science and

Engineering and M.Tech. Degree from

Uttarakhand Technical University in

Computer Science and Engineering. He boasts of more than ten years of

University teaching experience and around six months industrial experience.

He has more than thirty international publications to his credit in reputed

journals. Apart from this, he has participated in various International

Conferences and National Conferences and has presented the papers as well.

Manika Gupta was born in Rampur city on 14,

October 1999, India. She is currently pursuing

Bachelor of Science (Honours) Computer

Science from Teerthanker Mahaveer University,

Moradabad (U.P.), India and major field of

study include designing and coding in C++.

Gulista Khan is B.Tech from Kurukshetra

University and M.Tech from MMEC

Mullana. Ph. D. in the area of UWSN from

Teerthanker Mahaveer University,

Moradabad. She has more than 12 years of

experience. Published more than 15 papers

in International Journals of high impact

factor and 18 research papers in

Conferences. Her research interest includes

the Wireless Sensor Network. Currently

working as Assistant Professor in faculty of

Engineering, Teerthanker Mahaveer

University, Moradabad, India.

Pankaj Rajput was born in Dhampur city on

25, august 1998, India. He is currently

pursuing Bachelor of Science (Honours)

Computer Science from Teerthanker

Mahaveer University, Moradabad (U.P.),

India and major field of study includes

coding and designing.

