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Abstract:  This research paper explore a new way of detecting 

video forging between frames and intraframes by referring to the 

correlation coefficient using a frame continuity relationship. For 

any given video set, a groundbreaking technique called the 

“Spatio Temporal copy” produces video forgery detection using a 

machine learning method based on the continuous correlation 

between the conjugative sequences and the group of frames from 

the forgery video. The proposed forgery detection algorithm aims 

to identify the sequence groups forged intermediately by referring 

to the SVM classifier. Changing in the video sequence can result in 

a different fingerprint than collected initially, either at the spatial 

or at the temporal levels. Awareness of the statistical features that 

add frame continuity is the foundation for developing our 

algorithm to identify the video forgery detection that creates the 

duplicate. In the sequential continuity of the forged structures, we 

successfully identified the copy-move and copy delete frames, 

combining spatial and temporal fingerprints in an orderly and 

systematic approach. By referring the   forensic standard data 

sets such   as SULFA, VTD, and   REWIND, we have tested and 

obtained high accuracy results with prominent researchers in the 

forensic video area    

Keywords: Spatio-temporal, video-forgery, SVM, machine 

learning, forensic data set, 

I. Introduction 

Video content today can be easily edited by people with video 

editing tools such as Movie Maker, Adobe Premiere Pro, 

Avidemux,  After Effects, and Adobe. Given the benefits of 

those devices, some community abuse them and recreate video 

events, add or erase video frame sequences to suppress 

evidence. The issue involves checking the reliability and 

credibility of inspection videos, particularly when they are used 

as vital sources of evidence in court. Confirmation systems can 

be achieved partly using surveillance tools, widely used to 

monitor crimes. 

   Digital footage recorders, particularly inspection cameras, are 

widely available in this technology-oriented world at any 

location that generates massive amounts of multimedia content. 

Also, The passion for technology in the younger generation 

increased mobile devices and video cameras and increased the 

amount of digital content collected and used for techno-social 

communication. 

   Digital videos also provide significant forensic evidence in 

various technological, legal, medical, and surveillance 

applications that make these applications highly dependent on 

the integrity of the visual material presented in such videos. The 

growing use of digital images in our everyday lives has also led 

to an increased usage of easy-to-use and affordable tools for 

video editing that improves digital video visual content. A 

person can, however, easily use such web editing tools to make 

unauthorized changes to digital content, known as forgery, 

creation it difficult to locate full trust in the integrity of such 

digital content. 

  For proof of evidential support, digital videos are their 

believable   source of information for that  it is essential to 

ensure that the visual content of a video under scrutiny has not 

been distorted post-production and is a credible representation 

of reality 

Video forgery is very easy to perform, but without any 

advanced technology, it is challenging for a human eye to detect 

such forgeries. Monitoring and mobile video are very quickly 

generated. They are prone to forgery because it can be easily 

counterfeited by simply removing or inserting suitable frames 

from or in the respective images for the lack or presence of 

specific objects in the picture. This video is then used as false 

evidence—this reconstruction. The technology needed to 

detect such manipulated videos also demands significant 

improvements with the increased probability of such malicious 

operations. 

Authenticity can not be taken for granted because digital 

videos have been distorted. This is definitely accurate, though, 

that editing a composite video requires time and is more 

complicated than editing a single frame. Not all video 
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falsification is equally as important; it could be less essential to 

alter celebrity video images than to change the video recording 

of crime in advance. The alterability of footage, though, 

undermines our collective understanding of dependable and 

trustworthy credibility. As modern video editing technology 

becomes rapidly advanced, a forensic technique becomes 

urgently required for the identification of video falsification. 

The following types of video manipulation can occur depending 

on the context in which manipulation is performed. Related 

tempering field scenario as shown in Fig 1 as (A) manipulation 

of the space domain (B) manipulation of time-domain (C) 

manipulation of space-time, 

Figure  2(b) Shows a spatially manipulated video created 

from real footage of Figure 2(a) As shown in Figure 2(c), a 

falsifier may tame source videos by disrupting the frame by 

manipulation of pixel frames spatially. Sequence by replacing 

objects, inserting frames, and by deleting video files, and 

thereby generating momentarily disrupted videos. Finally, 

Figure 2(d) helps a forger to manipulate videos in a combination 

of both the spatial and the manipulate pixel bit within the video 

frame or via video frames (that is, a group of adjacent structures) 

as well as disrupting the frame sequence and creating spatially 

distorting videos. 

 

 

 
Fig 1.   Scenario of Tempering Domain 

 

 
Fig 2. Different domain  of  forensic forgery video with 

reference as (a) set of  Picture frames extracted from video(b) 

changes in the spatial features (c) changes in the temporal 

features (d) changes in Spatio-temporal features 

II  Literature survey 

The literature survey revealed that significant contributions to 

the detection of video falsification were found, and researchers 

developed and suggested various video forensic methods for 

the detection of video forging using active and passive 

strategies. The following section discusses several influential 

contributions in the video forgery detection field. 

 

       Different methods to detect the presence of inter-frame 

forgery in the video sequence have been suggested in the 

literature. Such forgeries are usually done by first converting 

the video into a series of frames, then deleting, inserting, and 

replicating specific frames. Whenever a video is saved, some 

compression inevitably leads to double compression after a 

doctoral video is manipulated. Some significant prominent 

contributions in inter-frame forgery suggest by sondos M. Fadl 

as residue pointe[1] Extract the residue data from a video 

stream of each frame. Then spatial, along with temporal 

energies, are subjugated to exemplify data flow, and anomalous 

points identify phony frames. Noise ratios of original and forged 

frames are predictable to differentiate insertion from replication 

attacks. Similarly, motion residue-based work has been 

proposed by authors [2] to identify the forgery region in forgery 

video. 

Hemani Sharma et al. [3][6],[10]., analyze and review the 

different classification and graph approaches used for video 

forgery detection. 

  Nugroho Satriyanto et al. [4]., projected a method based on 

locale video fake detection using the Gaussian mixture model 

for their suggestion. Jamimamul Bakas et al., [5] notice forgery 

based technique on double compression in MPEG videos and 

find the exact region of interference within the frames 

   Sanjay et al., [7]  invented an object movement based on 

displacement paths is based on the optical flow inconsistency, 
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which considers picture motion for recognition and 

identification of clone. Using Dynamic Time Warping (DTW) 

matching algorithm to detect the cloned entity, the displacement 

paths are finally compared among themselves.P. Karthikeyan et 

al. [8,]., proposed a combination of mpeg2 and optical flow 

based forged scene detection. 

Jayashree Kharat[9],[11]proposed frame duplication 

identification method using The 2-stage algorithm is suggested 

to identify doubtful frames and to extract their features and 

compare them with other frames in an examination video to 

build a decision. Scale-Invariant SIFT key points are used as an 

evaluation function. 

 

III. Data set design issues  

Using SULPA[13], REWIND[14], CVIP[15], and YTD[16] 

helped for copy-move and copy-paste tampering operations, we 

usually referred to it as copy-create video forgery, generating a 

data set from foreshadowed data set. We use the forensic 

dataset for testing and training using Support Vector  

Mchine(SVM)  to classify forgery and unique by setting the 

parameter. In the following section explaining about the 

essential characteristics of the forensic dataset for the proposed 

implementation of copy create video forgery detection using 

machine learning approach. 

Surrey University Library for forensic analysis (SULFA)[13]: 

It includes authentic and fake video files accessible via the 

University of Surrey website. Some 150 videos are obtained 

from various camera sources, including Fujifilm S2800HD, 

Nikon S3000, and CanonSx 220. Each video has a length of 

around 10 seconds, 320 into 240, and 30 frames per second 

resolution. All videos have time and space features. Figure 3 

displays the SULFA[13] video gallery schematic view used for 

the proposed experiment.   

 
 

Fig 3: Schematic view of SULFA Dataset 

Reverse engineering OF audiovisual content data (REWIND)  

[14]: This dataset consists of 20 SULFA videos: ten authentic 

and ten fake. Through route has a motion of 320x240 pixels and 

a frame rate of 30 fps. Single recorded sequences with a 

low-end device. They were all compacted in the initial frames in 

an uncompressed format (RV24, 24 bit RGB). To suit the entire 

device efficiently to the same level, they have all migrated to one 

file format in YUV (4:2:0). The percent scheme view of the 

lossless testing video gallery for our experiment is shown in 

Figures 4 to Fig 6. 

 

 
Fig 4: Schematic view Of REWIND dataset at quality factor set 

at 10 

 

 

 
Fig 5: Schemetic view Of REWIND dataset at quality factors as 

20 
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Fig 6: Schemetic view Of REWIND dataset at quality factors as 

30 

 

Video Tempering Data Set (VTD) [15]: The VTD, which 

focuses on the video manipulation of videos, consists of 33 

16-size videos with a standard high-definition resolution of 30 

fps. The original data set was divided into several unmodified 

segments with moving copies and pasting. We use the standard 

datasets above to construct a custom video to monitor the 

time-tempering video transformations on our proposed 

algorithm for manipulation and observation.  A representative 

set of VTD set, as shown in Fig  7. 

 

 

 
 

Fig  7.  Representative video dataset gallery from VTD dataset 

Computer Vision and Image Processing Group (CVIP) [16]: 

The Collection contains 160 videos from 6 original files. 

Manipulated videos are achieved by choosing a video frame 

object and recording a number of pictures. The copied object is 

cloned to another portion of the same video after potential 

transformations. The representative video forensic set is as 

shown in Fig.8. 

 

 
 

Fig 8. A representative group from CVIP for forgery detection 

using brightness features. 

 

By considering above mentioned forensic dataset with reference 

of time as a feature space consider for design and implementing 

our proposed algorithm. 

 

IV. Frame work and Algorithm for temporal 

tempering copy create algorithm 

 
The fundamental principle of the proposed method is that 

variations of gray sequence correspondence coefficients are 

natural. Copying variations will also have anomalous values. 

Next, we examine the differences in the gray value correlation 

coefficients between sequential video frames and use SVM to 

distinguish between original videos and forgery. Our approach 

is evaluated in a massive analysis and the findings indicate that 

this is a way of understanding high precision and accuracy, 

In a video that was not disturbed with traces, the similarity of 

the material similarity between distant frames is relatively weak. 

In contrast, the next photos have high content. The gray value 

of the frame is also easier to characterize video content 

reflecting the characteristics of the color and brightness and 

distribution level of the picture frame. We propose a technique 

based on the gray-value intercourse association coefficient. Fig. 

5 defines the structure of discontinuity characteristics in the 

alleged video between different frame similarities. 
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Fig 9.  Stepwise representation   of  Framework of proposed 

work at Preliminary Level Investigation 

1 Investigation of Preliminary Level: 

Framework for the detection of video discontinuity 

characteristics from forensic data to identify an anomalous point 

The framework and details of the method to identify 

discontinuity content are as shown in fig.9.  

Also, we would know that the checked video is either faked or 

manipulated at the first level of the inquiry, now we are still 

investigating at the second level. By adding or removing the 

checked video, we can recognize the manipulated collection of 

the sequence. 

2. Secondary Level Investigation: 

Upon analyzing the visionary of the video, we suggest forensic 

detection of copy-create film forgery by referring to the regular 

forensic forgery data set,  as mentioned in the dataset design 

section.   

For each outer frame, we find a predefined neighborhood, and 

all picture frames are alienated into non-overlapping blocks 

within that neighborhood. Next, we calculate the association 

between two respective blocks that belong to each pair of 

subsequent frames in this neighborhood (blocks in two frames 

at the same relative position). Here, too, the correlation is 

measured for outlier detection by computing the Pearson 

Correlation, which is supported by the 3ÿ rule. We suggested a 

difference in the coefficient of correlation, which was followed 

by a technique for classifying original videos and generating 

images. The Gray Value effectively illustrates video information 

features content. For a frame-tampered image, gray values will 

be significantly modified at the manipulated stage. The structure 

is shown in Fig 10. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 10.  Frame in this neighborhood (blocks in two frames at 

the same relative position). Here, too, the correlation is 

measured for outlier  

 

 V.  Results 

The results of these experiments on the forensic approach to 

video forgery detection using correlation differences are 

discussed in this section. The set of data used for the evaluation 

is broken down into three parts. For the experimental method, 

the use of three separate data sets is based on three objectives.  

The first explanation is to use the planned data set to replicate 

these experiments to learn how copying, using the correlation 

coefficient, can effectively detect a forgery in a digital picture. 

The second explanation is to use the video data set by 

generating qualified copies in videos to determine the 

robustness of this proposed technique. The third interpretation 

is to check this technique to identify forgeries of compressed 

images.  

   These goals have been met. The results presented in this 

section indicate that variations in statistical correlation were 

effectively used to copy the detection of forgery in digital 

images. 

Figures 11 to 18 shows the result that the copy produces 

forgery detection using difference in correlation. For the 20 test 
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videos from  proposed  forensic dataset, the correlation 

difference between interframe frame-blocks. Here we present a 

representative sample result from the video tested 

 

 

Fig11: Tested video is converted into a group of picture frames 

from the representative tested video set from SULFA  dataset 

 

 

 

Fig 12: Preliminary Level Investigation result by converting a 

group of picture frames by applying the colour transformation. 

From sulfa tested video gallery. 
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Fig 13:  Extraction Of Timing parameter of correlation 

coefficient from the Sulfa dataset. 

 

 

 

 

Fig14:  Sequence of Tempered Forged identified by the 

proposed algorithm. 

 

Fig 15:  Extraction Of Timing parameter of correlation 

coefficient from the REWIND  dataset. 

 

Fig16. The resultant forged sequence identified in REWIND 

Dataset 

 

Fig 17.  Extraction Of Timing parameter of correlation 

coefficient from the other Proposed Dataset. 
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Fig18. The resultant forged sequence identified in the 

proposed dataset 

This technique is capable of discerning whether a video has been 

altered. The classification accuracy between guanine and 

picture frame inserted forgeries is, as predicted, more 

significant than that of frame-deleted forgeries. Nevertheless, 

even the distinction accuracy between guanine and 

25-frame-deleted forgeries is 95.22%, which is the 

experiment’s lowest level. 

We then seek to identify them from guanine to various kinds of 

forgeries. The efficient outcome, too. The precision is 97.75%. 

Motivated by this, we are further attempting to identify 

frame-inserted forgeries and picture frame-deleted falsification. 

We distinguish the TWENTY-FIVE frame-inserted videos and 

TWENTY-FIVE frame-deleted videos, as well as the  ONE 

HUNDRED frame inserted videos and the ONE HUNDRED  

frame-deleted videos using the same process. 

 

VI.  Conclusions 

To detect and recognize forged forging interframes between 

conjugative forged copy sequences, we proposed an innovative 

method that creates video forgery based on the difference 

between frames and correlation, by referring the SVM 

classification as a learning machine. While the inter-frame 

forgery recognition series maintains among the most daunting 

problems, it persists in the detection of video forgery. With that 

approach, the central theme of complexity and redundancy is 

reduced in videos by the massive size of their color 

transformation techniques between different framesets. The 

suggested forensic copy-creating technique used to check the 

relationship of the interframe between the video sequence frame 

set by referencing the I-frame relationship between two 

conjugative frame classes. By considering the standard picture, 

the forgery data collection, such as the SULFA and 

Sysu-Obj-Forge datasets, has achieved good accuracy and 

precession. The rate of performance is above 90%, depending 

on the average value of the training sample. 
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