
Journal of Information Assurance and Security.
ISSN 1554-1010 Volume 8 (2013) pp. 167-176
© MIR Labs, www.mirlabs.net/jias/index.html

MIR Labs, USA

A Survivability Architecture for Object-Oriented

Software Systems

Aborisade, Dada O.1*, Sodiya Adesina S.2 and Ikuomola Aderonke J3
1Department of Computer Science

Federal University of Agriculture

Abeokuta, (FUNAAB) Nigeria.

aborisadeda@funaab.edu.ng

2Department of Computer Science

Federal University of Agriculture

Abeokuta, (FUNAAB) Nigeria.

sinaronke@yahoo.co.uk

3Department of Computer Science

Federal University of Agriculture

Abeokuta, (FUNAAB) Nigeria.

deronikng@yahoo.com

Abstract: The design of software systems has become an
important research area of interest because of the role
software plays in all facets of human lives. In spite of
existing software development techniques and approaches,
software failure is still a common occurrence, especially in
safety-critical environments. In this paper, a survivability
architecture based on threshold scheme and code
rejuvenation for object-oriented software system is proposed,
with intention to solve the problem of software degradation
commonly caused by steady growth in classes and methods
contained in object oriented software. A threshold value (TV)
is set to the final degradation point for the software system
with reference to the behaviour of methods and classes it
contain. Probability density function theory was used to
derive values for critical region denoted by (CV) and also to

determine whether the probability of threshold value (T)

falls within the critical region or not. A mechanism was
integrated into the architecture to monitor and determine the
steady growth of methods and classes such that when
threshold value TV) <= critical value (CV) set within the
critical region, the methods and classes that constitute the
software system are re-initiated in self-healing process. The
architecture is tested using two software programs developed
to implement treemap algorithms using nine (9) attributes.
Experimental observations show that the number of classes
in both standard and rejuvenated-enriched program remain at
the count of 50 after seven (7) days of running the programs.
It was also observed that while the number methods grow
from 250 to 2500 in standard program it remain at the count
of 250 in rejuvenated-enriched program. Therefore, the
proposed architecture is observed to be capable of preventing
code degradation and failure while the software without the
proposed architecture embedded could not prevent

degradation and failure as a result of classes and methods
growth.

Keywords: Survivability, Object-oriented systems,
Threshold Scheme, Software rejuvenation, and Code
rejuvenation

*Corresponding author: aborisadeda@funaab.edu.ng

I. Introduction

The trends in the World today point to the fact that
human activities depend, and would continue to rely on
software systems for their day to day operational activities.
These software systems are also relied upon by individuals
and corporate bodies. As the importance and complexity of
software systems increase, software practitioners and
researchers have not failed to advocate for a more systematic
and effective development methods for software systems [1].
A number of these software systems are designed using
object-oriented techniques. Object-oriented Software design
approach follows a design approach whereby the software is
composed of chunks of codes that are referred to as classes; a
basic unit of an object- oriented software system. The
concept of a class presents information and describes
behaviour that manage the information. The unavoidable
reliance on software systems prompted the need for an
effective survivability model in Object-oriented software
design, especially for mission-critical applications.
Survivability is defined as the ability of a system to
continually provide essential services to support the system
mission even in the presence of malicious attacks or system
failures [17]. In this paper, we describe survivability as the
capability of every unit of a software system component (i.e.

168 Aborisade et al.

class) to continually play certain roles expected to contribute
to the overall smooth running of the software systems in a
timely manner in the face of system failure. When compared
with the definition by [17], the term system used in broad
sense refers to software system that supports application
functional requirements of an operational environment. The
term mission refers to specific role a software system is to
play in an application working environment. The term timely
manner refers to the need of a software system to be
available and capable of rendering its expected services
within a time space that must not be noticeable during failure.
The terms attack, failure, and accident refer to all potentially
damaging events. Software system attacks are potentially
damaging events perpetuated by an intelligent adversary on
any or all of its components. Software attack could include
probes and denials of service. As software systems are
deployed in mission-critical environment, the need for its
survivability is very important for mission-critical systems.
As the reliance on software systems increases, its
survivability picture becomes more and more complicated
[3]. Failures in software system are potentially damaging
events caused by deficiencies in the system or an external
element on which the system depends such as software
design errors, hardware degradation, human errors or
corrupted data [4]. Software aging has also been identified as
the cause of software failure. Software aging effects are the
practical consequence of errors caused by software fault
activations. They work by gradually leading the system’s
erroneous state towards a failure occurrence [2]. Accidents
on the other hand describe a broad range of randomly
occurring and potentially damaging events such as natural
disasters. Accidents are often externally generated events
(e.g. outside the system) and failures are typically internally
generated events [4]. One important consideration for the
success of survivability in any software system is
application-level rejuvenation technique. Fine-grain
techniques such as application-level rejuvenation strategies
are better approach to mitigate the aging effects in software
systems [2]. This research paper presents an architecture for
ensuring survivability of object oriented software systems
usually occasioned by software degradation owing to classes
and method growth using code rejuvenation techniques.

Ellison et al opined that a system is considered to be a
survivable system, when it is capable of exhibiting the
following attributes and key properties.

 Capability to maintain essential properties.

 Capability to deliver essential services must be
sustained even if a significant portion of the system
is incapacitated.

 Capability to identify essential services, and the
essential properties that support them, within an
operational system.

 Capability to fulfill its mission in a timely manner.

And to maintain their capabilities to deliver
essential services [4] stated the following four key
properties of a survivable system:

(i) Resistance to attack.

(ii) Recognition of attacks and the extent of damage.

(iii) Recovery of full and essential services after attack
and

(iv) Adaptation and evolution to reduce effectiveness of
future attacks [4].

In our present information world, individuals and
Organizations depend on software systems either directly or
indirectly in all facets of their daily lives and operations.
Software systems are either directly used to solve human
complex problems or embedded into gadgets that modern
users carry. Therefore, a new survivability strategy for
software systems is needed to make software systems
reliable and dependable especially in a safety-critical
environment. A number of research efforts have been carried
out to prevent software failure. These include topics like
object-oriented approach to software design in distributed
computing systems and method to measure the survivability
of object-oriented software in design phase. To the best of
our knowledge however, no research has been reported on
survivability architecture for Object-Oriented Software
systems. Hence, the need for an architectural framework
proposed in this paper. Common causes of object oriented
software failure apart from other external factors mentioned
in this paper include continuous growth in methods and
classes, corrupted data, undetected missing method calls [9],
and software degradation. Our proposed survivability
architecture for object-oriented software systems design is
targeted at solving the problem of software degradation
occasioned by increased growth in classes and methods.
This is achieved through threshold scheme and software
rejuvenation technique. The remaining part of this paper is
organized as follows; Section II discusses reviews of related
literature. Section III discusses the proposed survivability
architecture, Section IV discusses results and implementation
while Section V concludes the work.

II. Related Work

A. A number of related research works reviewed for the
purpose of this work include the followings;
Ellison et al described survivability as an approach to ensure
that a system that must operate in an unbounded network is
robust in the presence of attack and will survive attacks that
result in network intrusions. They included as part of their
discussions of survivability concepts such as integrated
engineering framework, survivability practice, the
specification of survivability requirements, and strategies for
achieving survivability, but did not discuss anything about
survivability of object oriented system. [15] introduced a
survivability framework for distributed systems through the
use of virtualization technology and software rejuvenation
methodology. They presented a recovery model and
evaluated the steady-state system availability and
survivability based on Markovian analysis through SHAPE
tools. However, their software rejuvenation effort does not
prevent removal of faults but rather prevented faults from
being responsible for the whole system failure. [6]

A Survivability Architecture for Object-Oriented Software Systems 169

introduced an entropy-based approach for assessing object-
oriented software maintainability and degradation. They
reported that Object oriented software degradation may be
assessed by measuring the increase in the number of “links”,
or coupling, within an abstraction model and between
abstraction models of the software. They also found that
software degradation may also be measured using cyclomatic
complexity, since it has been shown to be highly correlated
with fault proneness of OO classes. They took the approach
of defining software decay in terms of Shannon entropy and
McCabecyclomatic complexity using industry-established
complexity threshold criteria. [7] presented a method to
measure the survivability of object-oriented software in
design phase. They characterized Object oriented software
components Petri net which combines the features of State
chart and Object Diagram. A fuzzy number was introduced
to this net to represent uncertain elements that might affect
the survivability. Survival Possibility Theory was then used
to produce survivability measure function for each
component. A survivability measure index is defined for the
system. They could only prove that this index is monotonic.
[8] proposed a framework and analyzed existing software
update systems with their framework. They examined the
ability of the framework to communicate information
securely in the event of a key compromise to be weak or
non-existent. They also identified core security principles
that allow software update systems to survive key
compromise. Using these ideas, they designed and
implemented a software update framework that increases
resilience to key compromise. [13] explored the quality of
design of software components using object oriented
paradigm. They used a number of object oriented metrics
proposed in the literature for measuring the design attributes
such as inheritance, coupling, polymorphism etc. These
metrics were used to analyze various features of software
component. They however, did not relate it to survivability
of object oriented systems. [10] proposed a survivability
evaluation model and analysis performance of Wireless
Sensor Networks. They presented the model by representing
the states of Wireless Sensor Networks under attack. The
survivability of WSN is expressed as a continuous time
Markov Chain to describe the status of real WSN’s in the
face of Dos attack. They proposed a threshold condition to
trigger the transition between the states of the Wireless
Sensor Network (WSN). They further presented a
survivability model and evaluation of WSN under key
compromise. Their study however did not include key
revocation scheme, single node software rejuvenation and
reconfiguration scheme for mission critical operations, based
on self- healing concept.
B. Entropy-based Measure of OO Software Degradation
 Hector et al reported that measure of Object
Oriented software shows that software systems could be
degraded overtime. Industrial-based risk complexity
threshold criteria called McCabeCyclomatic Complexity (CC)
indicate that a class comprises simple methods (e.g. simple
class constructors, simple class destructors, and other simple
procedures)[6]. The behaviour of methods, classes,
constructors, or destructors as related to the degradation of
software were defined. Similarly, NASA SATC (Software
Assurance Technology Center) WMC (Weighted Methods
per Class) risk thresholds were also stated [12]. The

application of these thresholds in industry has gone a long
way in helping software developers and managers to make
good judgments about the condition of their software, and
has also given a good insight into developing our own
survivability model as explained in the following section [6].
C. Survivability of Software Systems
[2] proposed evaluation of six rejuvenation strategies
categorized in terms of granularity. Their results show that
the overhead impact of the rejuvenation techniques is related
to their granularity. They reported that techniques such as
application-level rejuvenation strategies are better as a first
tentative approach to mitigate the software aging effects.
They claimed that if the first strategy fails, then a
rejuvenation technique from the next higher level of
granularity could be used. They reported a very important
result related to the virtualization technology which says that
virtualization was the major reason for high increase in
memory fragmentation, which commonly results in aging-
based failures in old software systems. This assertion is
important in modern day technology in which virtualization
is a core technology of the cloud-computing. [2] also
presented guidelines for the use of the appropriate scenario
for each rejuvenation techniques. In [5] a set of extended
metrics were proposed to account for information gained
from a user’s point of view regarding the intensity of the
observed failures. To estimate the software reliability
through testing, an extended adaptive testing strategy,
namely Modified Adaptive Testing (MAT) was proposed.
The use of test history information allows the resulting test
process to be adaptive in the selection of tests under limited
test budget. Simulations and experiments on real-life
programs were conducted to evaluate the effectiveness of
MAT. Results showed that the reliability estimates obtained
using MAT are closer to the real reliability than those
obtained using random testing and lead to lower variance
than the techniques used for comparison, which means MAT
can be applied to help testers and reliability engineers better
understand the reliability of their programs. They concluded
that the proposed approach can enhance the software
reliability estimation testing by guiding the test case
selection process by providing more descriptive and accurate
results. [16] defined a new multidimensional measure of
OSS (Open Source Software) project survivability and
followed the traditional method of new measure evaluation
to validate the new measure. They defined Project viability
in terms of vigor, resilience, and organization in
mathematical and natural language. They also formulated VI
(Viability Index) to capture the dimensions of project
viability and provide a tangible measure of survivability.
Their empirical validation confirms that project viability is
consistent with reality and that vigor, resilience, and
organization are three different attributes of the project
viability, each contributing to the survivability of OSS
projects over their lifecycle. In [14], a language called Stitch
for representing repair strategies within the context of an
architecture-based self-adaptation framework was presented.
Stitch supports a clear representation of repair decision trees
together with the ability to state objectives and allow a self-
adaptive system to select a strategy that has optimal utility in
a given context, even in the presence of potential timing
delays and outcome uncertainty. [11] described the
survivability of the network in recent years. The work

170 Aborisade et al.

highlighted technical measures for improving survivability in
open environment, in which single functional mechanism
(safety or reliability) is not sufficient to ensure a system.
They opined that it is necessary to introduce research ideas
on collaborative mechanism of survivability that will
improve information sharing and self-repair ability. They

believed that by optimizing the survivability mechanisms, it
can improve the reliability and survivability of the whole
network service system. They also claimed that the research
advancements on network system’s survivability is relatively
slow when compared with growth of network .

 III. Proposed Survivability Architecture

A. The survivability architecture proposed in this paper is based on software rejuvenation technique as

depicted in Figure 1.

 CLASS2initial

Attributei1

CLASS1initial CLASSNInitial

Attributei1

Methodi1

 Attributei2
 Attributei2

 Methodi2

attributein
attributein

CLASS1inter CLASSNinter

Attributeint2

Attributeint2

Attributeintn

Attributeintn

Methodintn

CLASS1final CLASS2final CLASSnfinal
Attributefinal1

Attributefinal1

Methodfinal1

Attributefinal2

Attributefinal2
Attributefinaln

Attributefinaln

Methodfinaln
Methodfinal2

Code rejuvenation terminated
Code rejuvenation initiated Tv <= Cv

 Code growth process

Attributeint1

Attributeint1
Methodin

Methodint1 Methodint2

CLASS2 inter

 Figure 1: Proposed Survivability Architecture

In the proposed survivability architecture, an object
oriented software system is visualized as a system
composed of internal structures like classes, attributes
and methods (operations). These classes are
represented as CLASS1 to CLASSN for every class
state. These are represented as CLASS1initial,
CLASS2initial, and CLASSNinitial (for classes in
initial state).CLASS1inter, CLASS2inter, and
CLASSNinter (for classes in intermeadiate state) and
CLASS1final, CLASS2final, and CLASSnfinal (for
classes in final state). The initial state of classes refers
to the state a software system is rendering the services
for which it is developed without any indication of
degradation. The intermediate state is captured in the
architectural diagram as the state when the internal
structures of the software system like classes and
methods start to show indications of growth (getting

degraded). In this design, a threshold value (TV) is set
to the final degradation point for the software system
using McCabeCC threshold metrics idea with regards
to the behaviour of methods and classes. The initial
degradation point (Tv) is the point when the growth
of classes and methods constituting a software system
begins. The final degradation point (Tv) is the point
when the value of method growth is just next to the
critical region. The initial and final degradation value
(Tv) using average transition probabilities. A critical
region is the range of values for method growth that is
above the final degradation point. The critical region
values denoted by (CV) is also determined using the
probability density function theory to determine the

probability of threshold value T falling within the

region or not. A mechanism is integrated into the
architecture to monitor and determine the continuous

A Survivability Architecture for Object-Oriented Software Systems 171

growth of methods and classes such that when
threshold value TV <= critical value CV set within the
critical region, the methods and classes that constitute
the software system are re-initiated in self-healing
process. Code rejuvenation is initiated at this time

when the classes state change from the code growth
process to the final state. Code rejuvenation is
terminated when the classes states move from the
final state to the initial state.

-

-

P

)

1-P
A

P(1

A

gS

g

- s g

1-

-1

N

R

A

NTDAF

F

P

PP

A

P

P

D

 Figure 2: Transition State Model for the Proposed Architecture

B. Software Rejuvenation Transition State
Model

Figure 2 is the rejuvenation transition state
model that further describes the rejuvenation
technique in the proposed architecture. In our
proposed software system survivability technique,
the software system is said to be in Normal state N
when all the classes and methods in the system are
rendering their services and have not indicated any
sign of growth. The system is in Degradation state
(D) when the classes and methods start to grow i.e
N-D. The system enters the Attack A state when
the attack or failure is not noticed or properly
checked at the repair (R) state. The system enters
the Not Too Degraded (NTD) if repair state is not
capable of preventing the attack but is only able to
allow the system supporting important services.
Similarly, if repair state could not stop the system
from failing but is capable of protecting the
confidentiality and integrity of the data therein by
stopping the system from rendering any service, it
is said to be in Almost Fail (AF) state. If all
failure prevention and recovery from degradation
state to Attack fail then the system is said to have
entered a Failed state (F). The repair state (R) is
the most important state in the proposed
architecture because it is the first state after
degradation state where the software system is
rejuvenated. It is also the state where the threshold
value and critical values are determined and
compared with respect to the value of classes and
methods. The determination of threshold and

critical values are based on the sojourn times in
each state with their transition probabilities as
described below;

Mn: Mean time for the system to resist entering
degradation state D.

Mv: Mean time for the system to resist entering the
failure state from degradation state D.

MA: Mean time taken by the system to detect a
failure and initiate the repair or rejuvenation.

PA: Probability of the software system entering fail
state when it is already in a degradation state.

Pg: Probability that the system will resist failure by
graceful Not Too Degraded (NTD).

Ps: Probability that the system would respond to
Almost Fail manner.

Therefore, the figure above indicate that N-D: 1-PA,
N-A:PA, A-F:1-(1-Ps-Pg), R-A:1-Ps-Pg, R-AF:Ps,
and R-NTD:Pg.. The minimum mean time t1 and
maximum mean time t2 are determined from the
values of Mn, Mv, and MA. The average transition
probabilities are also determined. Probability
density function is then applied to determine the

probability of threshold value T falling within a

particular region also to decide the critical region
for the system. In probability density function a

172 Aborisade et al.

random variable X has a density f, where f is non-
negative function, if

 P[t1≤X≤t2]= …………… (1)

where Tv is taken as the random variable X and
where one can think of f(x) dx as being the
probability of X falling within the infinitesimal
interval [x, x + dx]. In the system, software
rejuvenation is initiated when the value Tv is found
to be just less or equal to any lowest value of
measure within the critical region.

C. Availability Model for the Proposed
Architecture

Let ᵟ be the time rate for the software system

failures and ᵠ be the time rate for software system

repairs that are exponentially distributed. Also let

x be the time rate for its functional environment
failures and y be the time rate for the functional
environment repairs be exponentially distributed.
The system functional environment failure either

recovers fully with coverage probability p or not
with coverage probability (1-p). When this happens,
the system is said to be functioning in a degraded
mode. The assumption that the system and its

functional environment failures and repairs are
exponentially distributed, the availability model for
the proposed architecture is CTMC (Continuous
Time Markov Chain) with the transition diagram
indicated in Figure 3. In the Figure, i= {1,2,3,.,,n}
represents the number of classes in the software
system that are still providing normal service while
state Statei corresponds to the state of functional
environment failure in the system with i normal
classes. The software system continues to render its
services when all the classes are able to either call
or being called. Therefore, states i ϵ {1,2,3,……., n}
are normal states. If otherwise, it fails. Then states
Statei i ϵ {1,2,3,…….,n} are failed states. The
steady-state availability of the software system
represented by PA which is obtained as the sum of
the steady-state of the classes with threshold values
less than the critical value set (i.e Tv<= Cv), and is
defined as;

PA= …………… (2)

where πk is the steady-state probability of CTMC
being in state k and implemented in the system
code.

 Figure 3: CTMC-based Model for the Proposed Architecture

 IV. Implementation and Results

Two programs are written to implement
treemap algorithms in Java for testing the efficiency
of the proposed architecture. The two treemap
programs are made to have the same initial number of
methods and classes. One of the treemap programs
(called the standard program) is allowed to run and
grow the classes and methods in it without
incorporating the proposed mode elements (threshold

value and code rejuvenation condition) into it. The
second treemap program (called the rejuvenated–
enriched program) has the proposed architecture like
threshold value and code rejuvenation technique
incorporated into it. The two software programs are
tested on the same computer with same processor
speed and RAM capacity for 7 days. The internal
structures (attributes) are observed depicted in Tables
I and II.

py

 State1 State2 Staten-1 State3 Staten

 n n-1 3 2 1

x x
x

x
x

py py py

(1-p)y (1-p)y (1-p)y

2ᵟ 3ᵟ nᵟ

ᵠ ᵠ ᵠ

A Survivability Architecture for Object-Oriented Software Systems 173

Figure 4: Snapshot for rejuvenated–enriched program

Figure 5: Snapshot for standard program

174 Aborisade et al.

Table I: Program Attribute values at the beginning of run time

Attributes Standard

 Program

 Rejuvenated-Enriched Program

Blank Lines 10 10

Code Lines 1200 1200

Comment Lines 20 20

Executable

statements

 800 800

Declarative

Statements

 20 20

Number of

Classes

 50 50

Number of

Methods

 250 250

Error reported 75 25

Number of

corrections made

 20 20

Figure 6: Analysis for the behaviour of Standard Program and Rejuvenated–Enriched program at the beginning of run time.

Table II: Program Attribute values at the end of a Week (7 days) of run time.

Attributes Standard

 Program

 Rejuvenated-Enriched Program

A Survivability Architecture for Object-Oriented Software Systems 175

Blank Lines 10 10

Code Lines 1200 1200

Comment Lines 20 20

Executable

statements

 800 800

Declarative

Statements

 20 20

Number of

Classes

 50 50

Number of

Methods

 2500 250

Error reported 55 25

Number of

corrections made

 200 20

 Figure 7: Analysis for the behaviour of Standard Program and Rejuvenated Program at the end of 7 days run time.

The analysis in Figure 6 and 7 show that
incorporation of threshold and rejuvenation technique
in software system development can help ensure
software survivability, thereby preventing software
system failure.

V. Conclusion and Future Work
This paper presented a survivability architecture for
object-oriented software system that is targeted at
solving the problem of software degradation and
failure usually occasioned by increased growth in
classes and methods. The model is based on the idea
of code rejuvenation technique that is triggered by the
attainment of a threshold value. It is tested on two

programs developed to implement treemap algorithms
and found to be effective. Our future research effort in
this area would be geared towards implementing this
model on a more standard object oriented software
systems. It is also part of our future research
endeavour to investigate and propose survivability for
general software system.

References

[1] S. Ali and F. Robert .:”A Systematic Review of
Software Robustness”, Journal of Information and
Software Technology. Vol 55, Issue 1. Elsevier . Page
1–17. (2013).
[2] J. Alonso, R. Matias, E. Vicente, A. Maria and K.
S. Trivedi.”A Comparative Experimental study of
Software Rejuvenation Overhead”, An International

176 Aborisade et al.

Journal of Performance Evaluation Vol. 70 Elsevier
B.V. Page 231-250. © 2013.
[3] A. K. Charles, A. K Kevin, and S. P. Joon.”
Surviving in Cyberspace: A Game Theoretic
Approach”, Journal of Communications, Vol. 7, No. 6,
June, 2012. Academy Publisher. Pages 436-450. ©
2012.
[4] R. J. Ellison, D. A. Fisher, R. C. Linger, H. F.
Lipson, T. A. Lonstaff, N. R. Mead. “Survivability:
Protecting Your Critical Systems”. Published by
Internet Computing, IEEE. Vol 3, Issue 6. Software
Engineering Institute Carnegie Mellon University
Pittsburgh, PA 15213-3890. Pages 55-63.(1999).
[5] H. Hai, J. Chang-Hai, C. W. Kai-Yuan, W. Eric, P.
M. Aditya.” Enhancing Software Reliability Estimates
using Modified Adaptive Testing”. Journal of
Information and Software Technology Vol 55.
Elsevier . Pages 288-300. © 2012.
[6] M. O. Hector, H. E. Letha, and C. Glenn. “An
entropy-based approach to assessing Object-oriented
software maintainability and degradation − A method
and case study,” In Proceedings of Software
Engineering Research and Practice, 2006, Pages 442-
452. (2006).
[7] H. Jueliang, D. Zuohua, L. Jing, Y. Ling.
“Measuring the Survivability of Object-Oriented
Software”. TASE '09 Proceedings of the 2009 Third
IEEE International Symposium on Theoretical
Aspects of Software Engineering. Pages 329-330.
IEEE Computer Society Washington, DC, USA
©2009.
[8] S. Justin, M. Nick, and C. Justin.”Survivable Key
Compromise in Software Update Systems”, In
Proceedings of the 17th ACM conference on
Computer and Communications Security. Pages 61-72.
2010.
[9] M. Martin, B. Marcel, and M. Mira. “Detecting
Missing Method Calls in Object-Oriented Software”.
Proceedings of the 24th European Conference on
Object Oriented Programming (ECOOP'2010).
Pages2-25. Springer-Verlag Berlin, Heidelberg
©2010.

[10] S. Parvin, K. H. Farookh, S. P. Jong, and S. K.
Dong. “A survivability model in Wireless Sensor
Network”. An International Journal of Computer and
Mathematics with Application (2012), Elsevier Ltd.
Vol 64. December, 2012. Pages 3666–3682. (2012).
[11] W. Qingliang, Z. LiFang, J. Zheng-Tao, H.
Yunbing. ”Progress and Research of Network System
Survivability Scheme with Cooperative Information

Management”. Journal of Networks, Vol. 7, No. 10,
October, 2012. Page 1609-1615. (2012).
[12] L. H. Rosenberg. “Applying and Interpreting
Object Oriented Metrics,” In the Proceedings of
Software Technology Conference, Utah, April, 1998.
[13] J. S. V. S. Sastry, K. V. Ramesh, and M.
Padmaja. “Measuring Object-Oriented Systems Based
on the Experimental Analysis of the Complexity
Metrics”.International Journal of Engineering
Science and Technology (IJEST). ISSN : 0975-5462
Vol. 3 No. 5 May 2011. Pages 3726-3731. (2011).
[14] C. Shang-Wen and G. David. ”Stitch: A
language for Architecture-Based Self-Adaptation”.
The Journal of Systems and Software Vol. 85 (2012).
© 2012 Elsevier Inc. Page 2860– 2875. (2012).
[15] T. Thandar, P. Manish, C. Sung-Do, and S. P.
Jong. “A recovery Model for Survivable Distributed
Systems through the use of Virtualization”. Fourth
International Conference on Neworked Computing
and Advanced Information Management. Vol. 1,
pp.79-84. IEEE Computer Society (2008).
[16] R. Uzma and J. T. Marietta”Defining and
Evaluating a Measure of Open Source Project
Survivability”. IEEE Transactions on Software
Engineering, Vol. 38, No. 1. Published by the IEEE
Computer Society. Pages 163-174. (2012).
[17] Z. Yanjum (2010). “Survivable RFID Systems:
Issues, Challenges and Techniques”. IEEE
Transactions on Systems, Man, and Cybernetics-Part
C: Applications and Review. Volume 40, No 4, July,
2010.Page(s):406 - 418.2010.

Author Biographies:

Aborisade .D O. Olaniyi (Bsc, Msc) is a PhD student
in the Department of Computer Science, Federal
University of Agriculture Abeokuta, Nigeria. He has
research interest in Cloud Database Security, Digital
Forensics and Human Computer Interaction (HCI).
Sodiya A.S. (Bsc, Msc, PhD) is presently a Reader in
the Department of Computer Science, Federal
University of Agriculture, Abeokuta, Nigeria. His
research interests include Information Security,
Artificial Intelligence and Software Engineering. He
has published many papers in both Local and
International Journals.
Ikuomola A. J. (Bsc, Msc, PhD) is presently a
Lecturer in the Department of Computer Science,
Federal University of Agriculture Abeokuta, Nigeria.
Her research interest include Information and
Network Security, Cloud Computing, Artificial
Intelligence and HCI. She has published in both Local,
International Journals and refereed Conferences.

