
International Journal of Computer Information Systems and Industrial Management Applications.  

ISSN 2150-7988 Volume 14 (2022) pp. 226-238 

© MIR Labs, www.mirlabs.net/ijcisim/index.html                                                                                                                 

 

 

MIR Labs, USA 
 

Received: 10 January2021; Accepted: 20 March, 2021; Published: 22 April, 2022 

A Cross-Entropy Based Feature Selection Method 

for Binary Valued Data Classification  
  

Zhipeng Wang and Qiuming Zhu 
 

Department Of Computer Science, College of Information Science and Technology 

University of Nebraska at Omaha, Omaha, Nebraska 68182 USA 

zhipengwang@unomaha.edu, qzhu@unomaha.edu 

 

 

 

Abstract: Feature selection is a process of finding a meaningful 

subset of attributes from a given set of measurements for a 

purpose of revealing a coherent relation or causality in an event. 

The process is often indispensable to facilitate an effective 

pattern classification. It is usually a preprocessing step before 

constructing a machine learning model in big data analytics for 

improving the accuracy of predictive results. By selecting the 

most significant features, it could reduce the time of training and 

the complexity of the model, avoid data overfitting, and help user 

to better understand the source data and the modeling outcomes. 

Though features are commonly dealt with in continuous values, 

many features appear to be binary valued, i.e., either 1 or 0, in 

many real-world machine learning applications. Inspired by 

existing feature selection methods, a new framework called 

FMC_SELECTOR was presented in this paper which addresses 

specifically the selection of significant features of binary valued 

attributes from highly imbalanced large datasets. The 

FMC_SELECTOR combines the fisher linear discriminant 

analysis with a cross-entropy mechanism to create an integrated 

mapping function for evaluating each individual features from a 

given dataset. A new formulization called Mapping Based Cross-

Entropy Evaluation (MCE) was derived for a quantitative 

ranking of the features. A Positive Case Prediction Score (PPS) 

is explored to verify the significance of the features selected in a 

classification process. The performance of FMC_SELECTOR is 

compared with two popular feature selection methods – the 

Univariate Importance (UI) and Recursive Feature Elimination 

(RFM), and shows a better performance on the datasets tested.  

 
Keywords: Binary Features, Feature Selection, Cross Entropy, 

Pattern Classification, Model Verification.  

 

I. Introduction 

The features of an object, treated as individually 

measurable properties of the subject, are foremost essential 

and fundamental to a pattern recognition and machine learning 

process [6]. Many research works have recognized that by 

selecting the most important and significant features from the 

input dataset, it is possible to generate a better machine 

learning model and improve the overall accuracy of a 

classification. The feature selection process also has big effect 

in reducing the overfitting of dataset and increasing the 

precision of the model predictions [15]. 

Devijver and Kittler introduced the main concepts of 

feature selection in early 1980s [5]. They reviewed the 

heuristic methods for feature selection and used it for reducing 

the feature space of pattern classification. Later, Kenji and 

Rendall introduced a novel practical approach called Relief 

algorithm [2]. It was inspired by the instance-based learning 

and used two different ways to define the difference values of 

the nominal and numerical features. The general idea was to 

calculate the weight between two instances and compare them 

with a threshold to determine whether the selected feature is 

relevant or not. Exhaustive search was applied to go through 

every subset of the features by a given size and find the best 

value. In 1997, Blum and Langley gave a brief overview of 

feature selection techniques by providing important 

definitions and three categories of feature selection methods, 

namely the filter, wrapper, and embedded approaches [1]. 

Lately, a crow search algorithm was introduced by Dr. 

Askarzadeh for feature selection [30].  The algorithm was 

used to solve constrained engineering optimization problems 

by simulating the features that crows store their foods and 

retrieve it. In another paper, Xue et al. surveyed approaches 

on using evolutional computations for feature selection [31]. 

They concluded that some popular approach such as genetic 

algorithm (GA), genetic programming (GP), and particle 

swarm optimization (PSO) could be used to successfully 

improve the feature selection. However, they still pointed out 

some other issues, such as the scalability, effectiveness, and 

efficiency that were the important points for further 

improvement and could be addressed for potential future 

developments. Along that line, Anter and Ali designed a 

“hybrid crow” search optimization algorithm which integrated 

with chaos theory and fuzzy c-means algorithms for feature 

selection in medical domain [29]. Their general idea was to 

utilize the global optimization method and chaos theory to 

compensate for the lack of convergence of crow search 

algorithm (CSA) which transferred the random variables from 

Gaussian distribution to chaotic behavior. There was another 

paper which analyzed the clinic data of stroke patients by 

improving the feature selection method by Setyawati et al. 

[36]. They investigated a Fuzz Entropy method to generate the 

entropy values for each feature.  By selecting a proper set of 

candidate features, they could achieve a 96% accuracy in 

diagnosis by only using 13 out of 23 features. Feature 

selection for breast cancer diagnosis, clinical symptoms of 
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Diabetic Retinopathy, and for the prediction of heart disease 

among smokers were reported in [22], [34] and [35].  

In recent years, there are quite numbers of research focused 

on the verification of the existing feature selection methods. 

Post and his team [4] conducted experiments on the most 

popular feature selection algorithms by using 400 datasets.  

Surprisingly, only 41 percent of algorithms improved the 

pattern classification results by using the selected features and 

only 10 percent of them can significantly improve the 

classification results.  Another main difficult problem for 

feature selection is the large search space which leads to O(2n) 

computational complexity in possible solutions for a dataset 

which has n features, where some features are inter-correlated 

somehow. A feature which is not strongly relevant to target 

might performed well when it combines with other features 

[27]. To address such situations, several papers proposed their 

idea based on combined existing knowledge or modified 

existing formulas to address the above concerns [15] [16]. 

In addition to the algorithmic approaches, researchers also 

implemented various mathematical models for feature 

selection by using differential evaluation criteria and 

measurements, for example, Fisher’s Linear Discriminate 

(FLD) score, mutual information, ANOVA, chi-square, etc., 

[10].  

While a number of traditional techniques were well 

developed, there were some public software libraries 

encapsulated the existing functions together for user to apply, 

for example, scikit-learn (SKLearn), the machine learning 

package in Python [13].  Even though these software packages 

provided much convenience for general public to use, the 

current state-of-art of the achievements of these library 

functions were still not satisfactory especially in terms of 

finding the most effective and accurate solutions to the general 

problems in many real world scenarios.  Therefore many 

researchers keep working on developing new algorithms or 

improving the current methods for more efficient feature 

selection processes. 

It is known that most real-world datasets contain three types 

of feature values: binary type, continuous type, categorized 

type. Many real world datasets for pattern recognition are 

binary valued, for example, in representing the ‘yes’ or ‘no’ 

answers to survey questions, ‘positive’ or ‘negative’ remarks 

in medical records, ‘presence’ or ‘absence’ of forensic 

evidences in cyber security, ‘paid’ or ‘default’ status for 

insurance or financial fraud detection, etc.  Another source of 

binary features come from data preprocessing.  During the 

data collection stage, it is sometimes preferred to conduct a 

pre-analysis process to convert non-binary valued features to 

binary ones that could help researchers to understand each 

individual feature better and provide a clearer picture for the 

collected dataset.  It is possible to utilize the modified dataset 

for the rest process which could not only save the effort but 

also get a better machine learning model.  In the other words, 

binary values are popular in many applications because they 

can more easily determine whether a feature meeting certain 

criteria or not and giving a definite answer. 

In the context of pattern classification, these binary values 

are mostly denoted as either a number ‘0’ or a ‘1’for the 

features in the data to be analyzed.  Very often the values of 

these binary features are sparsely populated, i.e., the number 

of ‘0’s far exceeds the number of ‘1’s in multiple folds, or vice 

versa.  Large sparse matrices are common in general for data 

analytics tasks.  When the data is sparse the consequences 

would be: (1) lacking enough information to fit a 

discriminative or predictive model, thus losing the 

generalization capability of the model; or (2) missing the 

solution points for maximizing or minimizing a target function, 

thus causing dimensional distortion and inaccuracy of the 

outcome.  There could be two main causes for a feature value 

to be valued ‘0’: (1) genuine zeros where the ‘0’ represents 

one meaningful value, such as that in a medical record where 

most test results or diagnoses are negative; (2) missing values 

where a ‘0’ is used in place of ‘null’ for data that lacks a 

specification, which includes the cases that data is not 

collected, incomplete, or uncertain (e.g., unfilled fields in a 

survey or medical record, gaps in a sensory data inputs or 

record keeping, etc. ).  We will not try to distinguish the cases 

of above but consider them together as a presence of sparse 

data indistinctively in this paper for the simplicity of 

discussion.   

The significance of a feature with respect to its 

classification capability and performance cannot be judged 

simply by the sparseness.  A sparsely populated feature could 

still be discriminatively significant and useful in a model for 

data classification as long as the underlying information for 

the discrimination remains. A well populated (dense) feature 

is not necessary to be significant in terms of contributing to 

the classification accuracy if the critical piece of information 

for drawing the discriminative outcome is missing.  For the 

former case, pattern classification systems can still in turn put 

the different pieces of the incomplete, imprecise, or uncertain 

information together on an integrative ground for properly 

classifying the samples to different class belongings.   

In practice, many datasets with sparseness and binary 

valued features are also highly imbalanced, e.g., the amount 

of normal cases far outnumbers the amount of abnormal cases 

for medical diagnosis or for fraud detection.  The high 

imbalance ratio of the dataset poses another critical challenge 

to the classification of samples because the large 

disproportionateness of the number of samples between the 

majority (often the negative) class and the minority (often the 

positive) class.  It is more likely for the samples of already 

disadvantaged minority class, in terms of its relatively smaller 

number of membership in the dataset, to loss the necessary 

informative ground for the classification task due to the 

sparseness of the feature values.  Moreover, most feature 

assessment and performance evaluation metrics tend to work 

on balanced datasets, thus would produce a biases outcome 

when the dataset is imbalanced.  The inconsistency of the 

results between the balanced and imbalanced datasets makes 

the evaluation of the sparsely populated binary features more 

difficult.   

The traditional ways of handling the imbalanced dataset in 

classification is to do oversampling (Mock the positive data) 

or data under-sampling (Reduce the size of negative data) to 

address such concerns.  However, mocking the positive data 

can introduce the fake information into the dataset while 

reducing the negative data would cause the uncertainty and 

randomness for the data.  Therefore both these operations 

suffer from the modification of the original data in a somehow 
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unjustifiable way though efforts were taken to make the 

modifications as statistically sound as possible.   

How do we know if a sparsely populated binary feature still 

possesses the necessary information for classification on a 

given dataset?  How to assess the usefulness of the feature in 

a highly imbalanced dataset with sparsely populated values 

and still get the most significant or dominant features be 

selected for a classification task?  That is, how to identify the 

“discriminatively significant” features of a sparsely populated 

binary feature in terms of its production of a high 

classification rate and low false alarm rate for both positive 

class and negative class samples?  Since most previous 

experiments in feature selection were conducted on features 

of continuously distributed and balanced dataset, the theory 

and idea from previous work might not be suitable for the type 

of imbalanced datasets containing mostly binary valued 

features.  It is necessary and critic to address this specific issue 

by developing feature selection methods that perform well for 

this kind of datasets.  

   This paper is organized as follows: section II provides an 

overview of the technique foundation, and presents our new 

method namely the cross-entropy approach for binary valued 

feature selection.  Section III describes our FMC_SELECTOR 

approach and its associated MCE and PPS algorithms for the 

feature selection and verification.  Section IV describes our 

experiments and test results, and section V concludes with a 

summary. 

II. Overview of Binary Valued Feature 

Selection 

In many real world applications of machine learning, it is 

not uncommon that the raw datasets contains hundreds, even 

thousands of features. It would be very inefficient, and many 

times impractical to take account of all the features in building 

a predictive model. It is only possible to thoroughly analyze a 

portion of the features in many cases.  On the other hands, only 

a subtle subset of the features has significant influence on the 

outcomes (the targets) of the effectiveness and accuracy of the 

final model in many applications.  It is therefore necessary to 

know and acquire the subset from the overall features that are 

most critical to the building and validation of the model to be 

built.  It is also necessary to identify the individual features 

that has significant importance to reveal the cause-and-effect 

relations of certain event or phenomena, for example, the 

single or a few of the crucial functional genes affecting a 

specific disease, the major factors of a medical complication, 

the critical causes of a social or political event, the influential 

elements on the sales of certain consumer products, etc.  To 

address such concerns, applying feature selection would filter 

out non-essential features therefore simplify the machine 

learning model and reduce the construction time.  Sparse 

binary data could have an immense effect on the ability to 

properly assess and evaluate the discriminative significances 

of these features, thus the selection of these features deserves 

special attention and treatment.   

The general steps of feature selection method contain 

follows; (1) Applying an algorithm to all the features from 

given dataset; (2) Evaluating and selecting candidate feature 

into new feature set; (3) Continuing perform previous two 

steps until reaching the stopping condition; (4) Validating the 

feature selection method by evaluating the machine learning 

model which is generated from its return value. There are three 

theoretical foundations which can be applied for all the feature 

selection algorithms: filter method, wrapper method, and 

embedded method [7][8][28].  Most of these general steps and 

approaches are applicable to feature selection on binary 

valued datasets.   

II.1. Filter Method 

The filter method is a type of method that purely relies on 

mathematical formulation without utilizing the machine 

learning algorithm. The method selects features based on 

certain criterion. To define such criterion, most methods focus 

on relationships between feature and feature, relationships 

between feature and target, etc. The types of filter method can 

be adopted from information theory, correlation, distance, 

consistency, fuzzy-set and rough-set. There are two steps for 

a typical filter method: (1) applying math formula, and (2) 

making decision on the feature selection [17]. The first step is 

to apply math formula to each feature with required variable 

in that formula. After that, a list of values is represented as a 

specific characteristic for all the features. Then, the decision 

step will decide which feature is important or not by ranking 

the list of scores from either high to low or low to high. It is 

important to decide how many features need to be chosen.  

Most common algorithms in terms of filter method include: 

Information Gain [18], Fisher Score [19], ReliefF [20], etc. 

II.2. Wrapper Method 

Instead of developing a rigorous mathematical model, some 

researchers suggested a heuristics method by applying 

machine learning algorithms directly to a feature selection 

process [21]. The method utilizes the performance of classifier 

as an evaluation criterion on the selected feature set. By 

checking the machine learning outcomes of different feature 

set, it is possible to distinguish significant features by 

comparing the prediction result from the classification 

processes directly. It usually involves three steps. First step is 

to enter the original feature set into different types of machine 

learning algorithms. The second step is to remove the 

unimportant features based on the prediction results from the 

first step. The last step is to recursively repeat the previous 

steps until getting the optimized result. 

The processes of a typical wrapper method can also be 

divided into three categories: (1) backward selection, (2) 

forward selection, and (3) stepwise selection. The backward 

selection refers to a process that starts with all the features.  

For each iteration, the algorithm removes one feature based on 

the lowest prediction value. By contrasting to the backward 

selection, the forward selection starts with zero feature and for 

each iteration, the algorithms select the feature with the 

highest prediction score.  The stepwise selection is a hybrid 

method of forward and backward selection.  For example, 

when adding a new feature to the existing feature set one 

would use a forward selection.  It then performs a round of 

backward selection to remove the unrelated feature in existing 

candidate feature set.  The method addresses the correlative 

relations among the features.  Suchetha [21] suggested some 

classical wrapper methods, such as the Conditional Random 

Fields (CRF) and the Recursive Feature Elimination (RFM). 
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Some common machine learning algorithms for model 

construction are Naive Bayes (NB) [38], K-Nearest Neighbors 

(KNN) [22], Linear Regression, etc.  

II.3. Embedded Method 

The embedded method can be considered as a combination 

of the previous two methods – the filter and wrapper.  There 

are many ways to implement an embedded method.  For 

example, a mathematical formula can be integrated into a 

machine learning algorithm so that the feature selection 

process can be conducted during the construction of the 

machine learning model.  The typical embedded methods are 

algorithms such as Random Forest and Extra Tree [14].  Also, 

the regularization approaches are popular, among them the 

LASSO (L1 regularization) and Ridge (L2 regularization) 

methods are the most common types [33]. 

Depends on different situations, it is sometimes hard to 

choose one type of feature selection method over the others in 

the real-world applications.  However, there were several 

notable characteristics for each feature selection method.  For 

example, the advantage of filter method is that the machine 

learning algorithm will not influence the decision.  By 

comparing to wrapper method, the filter method is able to 

avoid overfitting where it is a possible situation that the input 

data are performed well in some algorithms but not well in 

other algorithms.  Also, overfitting may happen due to the 

nature of algorithm itself when a procedure works well on one 

type of data but another type of data might not perform well 

by using the same procedure.  However, since the filter 

method is independent from machine learning algorithm itself, 

the precision of the features selected might suffer. To address 

this problem, the wrapper method comes into play. Wrapper 

method can be considered as a heuristic method which tries all 

the possible combinations of sub-feature sets to generate the 

result.  However, it can also be considered as a cheat method 

since it relies on testing all the combination which could lead 

to higher order of time consumption and the complexity of 

algorithm itself. Also, due to the nature of machine learning 

algorithm, it is necessary to decide which algorithms to be 

involved in the learning stages.  The embedded method would 

take both advantages from previous methods. They can be 

faster than wrapper method and more accurate than filter 

method. However, it is unclear whether the result coming from 

one machine learning algorithm could perform well with other 

machine learning algorithms based on the different 

requirement criteria. 

   In this research, a filter-based method is adopted for 

selecting the most significant features for building a machine 

learning model for pattern classification on the dataset.  Using 

filter method can minimize the influence from different 

machine learning algorithms and decrease the processing time.  

Also, the filter-based method would explore the intrinsic 

characteristic of binary features which could be meaningful 

for this research. 

III. Cross-Entropy Measurement of Binary 

Valued Features  

It is well known that entropy is used to measure how much 

information contains in or can be obtained from a given 

variable, as it was introduced by Claude Shannon [12]. In 

machine learning area, Cross-entropy is used to measure the 

distribution of two variables for revealing their coherent 

relations [6]. Although there are various feature selection 

methods, the cross-entropy theory was not used for this 

purpose yet. 

III.1. Cross-Entropy 

Cross-Entropy is a computational mechanism that calculates 

the difference between two probability distributions over a 

discrete random variable x, say p and q, such that 

H(p, q) = -∑ 𝑝(𝑥) log 𝑞(𝑥)𝑥 ∈ 𝑋 . 

In the continuous case of x, it is expressed as 

H(p, q) = -∫ 𝑃(𝑥) log 𝑄(𝑥)d𝑥
𝑥

, where p = 
𝑑𝑃

𝑑𝑥
 and q = 

𝑑𝑄

𝑑𝑥
. 

Hooper [11] suggested that since the formula itself is non-

symmetric therefore it is important to identify p and q properly. 

In machine learning field, cross-entropy is commonly used to 

measure how good the given classification model is.  In this 

research and experimental cases, p denotes as target while q 

denotes the attributes toward the target, such as the features in 

a dataset.  If p and q are the same, this formula calculates the 

entropy of the variable itself.  

III.2. KL Divergence 

While the cross-entropy calculates the total entropy between 

the distributions, a closely related measurement of it is called 

the Kullback-Leibler (KL) divergence that calculates the 

relative entropy between two probability distributions [9], 

such that  

KL(p, q) = ∑ 𝑝(𝑥) log (
𝑞(𝑥)

𝑝(𝑥)
)𝑥 ∈ 𝑋 . 

In the continuous case of x, it is 

KL(p, q) = -∫ 𝑃(𝑥) log (
𝑄(𝑥)

𝑃(𝑥)
) 𝑑𝑥 

𝑥
. 

The KL divergence quantifies how much one distribution 

differs from the other. It concerns with what information 

content is present if p could be generated from q.  In other 

words, the KL divergence measures the average number of 

extra bits required to represent a message with q instead of p, 

not the total number of bits of p and q [6]. It is also noticed 

that KL-Divergence can never be negative.  If p and q are in 

the same value, then 
𝑞(𝑥)

𝑝(𝑥)
 = 1, and since log(

𝑞(𝑥)

𝑝(𝑥)
) = 0 the KL(p, 

q) = 0, which means that there is no divergence existing 

between p and q.  If p and q are not the same, the KL 

Divergence will represent the divergence of them in terms of 

the entropy encoded as the minimum average lossless size of 

the bits of the two distributions [32].   

Since the KL divergence requires the computation on 
𝑞(𝑥)

𝑝(𝑥)
, 

it poses a more strict requirement on the completeness of the 

distributions of the p(x) and q(x) which may not always 

satisfied in our research because of the sparsity of the binary 

valued dataset.  Therefore the cross-entropy H(p, q) was 

applied in this research with the treatment of the missing 

values of x ignored (setting p(x) = 0 or q(x) = 1) when 

computing for p(x) and q(x) in this research.  
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III.3. Methodologies Involved in this Research  

As we already mentioned, a filter-based method is adopted as 

a mathematical formulation of the process.  Applying the 

cross-entropy as a filter for selecting a set of binary valued 

features from given datasets, a features having similar 

distributions with the target attribute are identified as 

significant features.  Since the cross-entropy measures the 

differences of the two distribution, it also indicates the 

similarities between the two distributions in the same way.  A 

computational framework called Feature Mapping based 

Cross-Entropy Selector (FMC_SELECTOR) was thus 

developed in this research that centers on the use of a 

Mapping-based Cross-Entropy (MCE) evaluation method on 

the binary valued features for comparing and identifying a set 

of significant features.  After getting the returning set from 

MCE, a following up measurement called Positive Prediction 

Score (PPS) is introduced to verify the selected feature set for 

classification performance on the given dataset.  We describe 

the framework and its associated computational scheme in the 

next section.  

IV. The FMC_SELECTOR  

The general framework of FMC_SELECTOR is shown in 

Figure 1 below.  It consists of three major functional blocks: 

(1) Feature Pre-processing which is further divided into three 

steps: a. Data cleaning process, b. Removing correlated 

features, and c. Forming independent candidate set; (2) 

Applying MCE algorithm to select significant features; and (3) 

Applying PPS algorithm to verify the selected feature set. The 

functional blocks of the framework are described in the 

following subsections. 

Figure 1. FMC_SELECTOR functional blacks and 

processing flowchart 

IV.1. Feature Pre-processing  

The first step in the function black of feature pre-processing is 

to clean the dataset by removing noisy features and convert 

non-binary features to binary. Noisy features in this research 

refers to those features that have a large percentage of missing 

values or a constant value over all samples. Feature 

binarization in this research refers to convert the value which 

are either continuous or categorized to binary.  In the datasets 

for our experimentation, most features are already in binary 

values.  

The second step of the feature pre-processing is to remove 

the correlated features.  Correlated features can be considered 

as a redundancy of the information, therefore only one feature 

will be selected from each of the highly correlated feature 

groups in this research. There are two issues raised from the 

correlated features when constructing machine learning 

model. The first issue is multicollinearity.  Badr [25] indicated 

that it happens when one predictor variable in a multiple 

regression model can be linearly predicted from the others 

with a high degree of accuracy. This could lead to the 

misunderstanding and inaccuracy of the machine learning 

results. Although he suggested to use the decision tree 

algorithm to avoid this problem, there are some other 

algorithms that can be applied.  The Linear Regression, Naïve 

Bayes, and Support Vector Machine are used in our 

experiments for the verification of the features selected.  For 

the second issue of the correlated features, Tolosi and 

Lengauer indicated that some classical feature selection ideas 

such as penalized logistic regression or random forest would 

become unstable in the presence of high feature correlations 

[26].  It is because parts of the correlated features can be 

considered as a redundant which will add the unnecessary 

weights on these parts of the features in the classification 

processes while the redundant features add no additional 

information to the dataset.  It will make the same efforts as the 

multicollinearity when building the machine learning model. 

Therefore, removing it can enhance the accuracy of the 

machine learning model.   

During this pre-processing step, Spearman’s rank 

correlation coefficient was calculated for each pair of the 

features to identify the correlated feature groups among the 

features.  The formulation of the Spearman’s rank correlation 

coefficient is shown as follows: 

ρ = 1 – 
6 ∑ di

2

n(n2−1)
;  

where  ρ = the Spearman’s rank correlation coefficient,  

di = R(xi) – R(yi) is the difference between the two 

ranks of each observation - here they are the 

individual sample values of the binary 

features x and y,  

and  

n = number of observations – is the number of 

samples which equals to the number of rows 

as the dataset organized in a way such that 

each row represents the values of a sample 

over all the features and each column 

represents the values of all the samples on 

each particular feature.  

After the second step, a set of correlated feature pairs is 

extract from the original set.  The rest of features are then 

placed into a candidate feature set for selection.  Thus, the 

third step of the pre-processing is to choose the one and the 

only one most representative feature from feature pairs.  It is 

done by simply applying the Fisher’s linear discriminant 

function (LDF) to each individual feature in the group and 

select one of them by comparing the LDF scores. By 

projecting multi-dimensional object to one-dimension, the 

LDF it able to distinguish the different strengths of the 

features in terms of their discriminative property, it means that 

Data cleaning 

process 
Removing 

correlated features  

Forming 

independent 

candidate set  

Applying PPS algorithm to verify 

the selected feature set 

Applying MCE algorithm to 

select significant features 

Feature Pre-processing 
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the feature is more representative for its use in classification.  

The formula of Fisher’s LDF is shown as follows: 

Qk = 
|𝑚1𝑘− 𝑚𝑘|+|𝑚2𝑘− 𝑚𝑘 |

1

𝑛1
∑ |𝑥1𝑘

𝑗
−𝑚1𝑘|

𝑛1
𝑗=1 + 

1

𝑛2
∑ |𝑥2𝑘

𝑗
−𝑚2𝑘|

𝑛2
𝑗=1

  

Where k is the kth feature of the dataset, 

m1k = 
1

n1
∑ x1k

jn1
j=1  - the mean value of feature k for 

class 1 (target is negative) 

m2k = 
1

n2
∑ x2k

jn2
j=1 ,  - the mean value of feature k for 

class 2 (target is positive) 

mk = 
1

n1+n2
 (∑ x2k

jn2
j=1   +∑ x1k

jn1
j=1  ) - the mean value 

of feature k for classes 1 and 2 together 

n1, n2 – the number of samples for class 1 and class 

2, respectively 

x1k
j

 - the value of the feature k on the jth sample of 

class 1 

x2k
j

 - the value of the feature k on the jth sample of 

class 2 

By the end of the above processing, two feature sets are 

created.  One is a non-selected feature set that contains the 

non-representative correlated features listed in groups along 

with the noisy features.  The other set is the candidate features 

that contains both the representative features from the 

correlated groups and the individual features that do not 

correlate with any other features. The independent set is to be 

processed by the MCE algorithm described in the next section. 

Once the MCE algorithm is applied to select the significant 

features from the independent feature set, the results will be 

store in a new feature set called selected feature set. 

IV.2. Applying MCE Algorithm to Select Significant 

Features  

As in the common practice, the dataset for feature selection 

contains multiple columns of attributes that we call them 

features.  Each row of the dataset represents a sample of the 

data of different feature values. Apart from the features, 

another single column is labeled as ‘target’ which indicates 

what the class or category the sample belongs. In the 

experiments of this research, the target is also binary valued, 

that is, a binary classification problem is addressed.  We will 

call the samples with the target value ‘1’ as “positive” 

samples, and the samples with the target value ‘0’ as 

“negative” samples. 

The computational procedure of the Mapping Based 

Cross-Entropy Evaluation (MCE) is formulated as follows: 

1. First, we calculate the estimated probability 

distributions of the samples with respect to the positive 

(value ‘1’) and negative (value ‘0’) labels in the 

“target”, that is  

p(1) = 
𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑠𝑎𝑚𝑝𝑙𝑒𝑠 𝑡ℎ𝑎𝑡 ℎ𝑎𝑣𝑒 𝑡ℎ𝑒 𝑡𝑎𝑟𝑔𝑒𝑡 𝑣𝑎𝑙𝑢𝑒 1′ ′

𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑠𝑎𝑚𝑝𝑙𝑒𝑠 𝑖𝑛 𝑡ℎ𝑒 𝑑𝑎𝑡𝑎𝑠𝑒𝑡
, 

p(0) = 
𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑠𝑎𝑚𝑝𝑙𝑒𝑠 𝑡ℎ𝑎𝑡 ℎ𝑎𝑣𝑒 𝑡ℎ𝑒 𝑡𝑎𝑟𝑔𝑒𝑡 𝑣𝑎𝑙𝑢𝑒 0′ ′

𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑠𝑎𝑚𝑝𝑙𝑒𝑠 𝑖𝑛 𝑡ℎ𝑒 𝑑𝑎𝑡𝑎𝑠𝑒𝑡
. 

2. Second, calculate the “Positive Consistency Rate 

(PCR)” and “Negative Consistency Rate (NCR)” for 

each individual feature q with respect to the “target,” 

such that  

PCR(q) = 
𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑠𝑎𝑚𝑝𝑙𝑒𝑠 ℎ𝑎𝑣𝑖𝑛𝑔 𝑡ℎ𝑒  𝑣𝑎𝑙𝑢𝑒 1′ ′ 𝑖𝑛 𝑓𝑒𝑎𝑡𝑢𝑟𝑒 𝑞   

𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑠𝑎𝑚𝑝𝑙𝑒𝑠 𝑖𝑛 𝑡ℎ𝑒 𝑑𝑎𝑡𝑎𝑠𝑒𝑡
 

NCR(q) = 
𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒 𝑠𝑎𝑚𝑝𝑙𝑒𝑠 ℎ𝑎𝑣𝑖𝑛𝑔 𝑡ℎ𝑒  𝑣𝑎𝑙𝑢𝑒 0′ ′  𝑖𝑛 𝑓𝑒𝑎𝑡𝑢𝑟𝑒 𝑞  

𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒 𝑠𝑎𝑚𝑝𝑙𝑒𝑠 𝑖𝑛 𝑡ℎ𝑒 𝑑𝑎𝑡𝑎𝑠𝑒𝑡
 

3. Applying the above four values, the MCE value of a 

feature q is calculated as 

MCE(q) = -(p(1)log(PCR(q)) + p(0)log(NCR(q))) 

From the definition of the values involved in the 

calculation of MCE(p), it is seen that a feature with higher 

value of MCE(p) means the higher difference between the 

distributions of the feature values and the target values.  In 

contrast, the lower MCE(p) value means the distribution of the 

feature values is more align to the distribution of the target.  In 

other words, the feature is more relevant to the target, thus 

significant for the classification of the samples with respect to 

the target. 

For a given feature, it is critical to figure out the portion of 

information real useful to evaluate its relevance with the 

target. In this research, the PCR(q) and NCR(q) are chosen as 

the measurement of the relevance where the feature and target 

have the same value. 

By the accomplishment of this computational step, the 

features with high MCE(q) values are selected from candidate 

feature set and placed into the selected feature set while the 

features with low MCE(q) values are put back into the non-

selected feature set.  In the next step, the experiments of 

verification steps are conducted to make comparison between 

the non-selected feature set and selected feature set so as to 

validate the significance of the features selected. 

IV.3. Applying PPS Algorithm to Verify the Selected 

Feature Set  

To evaluate the performance of the selected features in the 

building of machine learning model from the imbalanced 

dataset in its applications, we developed and used a Positive-

case Prediction Score (PPS).  It was noted that the datasets in 

our experimentation are highly imbalanced and there are no 

rebalancing operations involved in the entire process of 

FMC_SELECTOR.  It is therefore to evaluate the verification 

outcomes with respect to the performance (classification rate) 

on both the positive class samples and the negative class 

samples without a bias.  The PPS aims to evaluate the 

performance of the machine learning model in detecting 

positive cases in the datasets, while also counts the negative 

cases indirectly, that is, a non-biased measurement for the 

classification performance. 

The PPS score in this research is calculated based on the 

general concept of the confusion matrix for evaluating the 

classification outcomes or the classifier performances.  A 

confusion matrix is a 2D tabular representation to record the 

number of correct and wrong predictions from a classification 

process.  For binary classifications, the confusion matrix 

consists of the following four elements:  

• TP - True Positive, which means the actual result is 

positive and the machine’s prediction is positive. 
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• FP - False Positive, which means the actual result is 

negative and the machine predicted positive. 

• TN - True Negative, which means the result is 

actually negative and the machine predicts negative. 

• FN - False Negative, which means the actual result is 

positive, but the machine predicted negative. 

It is known that the common classifier performance 

evaluators such as the F1 score and the Matthews Correlation 

Coefficient (MCC) are biased measurements with respect to 

imbalanced datasets [39].  These measurements are therefore 

not suitable for an accurate evaluation of the discriminative 

performance of the features selected in the verification stage 

of this research because both the experimental datasets of this 

research are both highly imbalanced.   

The PPS takes the “True Positive Rate (TPR)” as a gain 

and counts the “False Positive Rate (FPR)” as a penalty to 

calculate the discriminant outcome measurement for a feature 

q in a way such that PPS(q) = TPR(q) – FPR(q), where the 

TPR and FPR are two combinational rates defined on the 

outcomes represented by the general confusion matrix of a 

classification process (a machine learning model) instead of 

on the labels of the target.  That is  

TPR(q) = 
𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑠𝑎𝑚𝑝𝑙𝑒𝑠 𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑑 𝑎𝑠 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑤ℎ𝑖𝑙𝑒 𝑡ℎ𝑒𝑖𝑟 𝑡𝑎𝑟𝑔𝑒𝑡 𝑣𝑎𝑙𝑢𝑒 𝑖𝑠 1′ ′

𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑠𝑎𝑚𝑝𝑙𝑒𝑠 𝑖𝑛 𝑡ℎ𝑒 𝑑𝑎𝑡𝑎𝑠𝑒𝑡

and 

FPR(q) = 
𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑠𝑎𝑚𝑝𝑙𝑒𝑠 𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑑 𝑎𝑠 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑤ℎ𝑖𝑙𝑒 𝑡ℎ𝑒𝑖𝑟 𝑡𝑎𝑟𝑔𝑒𝑡 𝑣𝑎𝑙𝑢𝑒 𝑖𝑠 0′ ′  

𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒 𝑠𝑎𝑚𝑝𝑙𝑒𝑠 𝑖𝑛 𝑡ℎ𝑒 𝑑𝑎𝑡𝑎𝑠𝑒𝑡
 

Note that for a given dataset, TPR(q) = 1 – FNR(q) and 

FPR(q) = 1 – TNR(q), where  

FNR(q) = 
𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑠𝑎𝑚𝑝𝑙𝑒𝑠 𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑑 𝑎𝑠 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒 𝑤ℎ𝑖𝑙𝑒 𝑡ℎ𝑒𝑖𝑟 𝑡𝑎𝑟𝑔𝑒𝑡 𝑣𝑎𝑙𝑢𝑒 𝑖𝑠 1′ ′

𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑠𝑎𝑚𝑝𝑙𝑒𝑠 𝑖𝑛 𝑡ℎ𝑒 𝑑𝑎𝑡𝑎𝑠𝑒𝑡

and 

TNR(q) = 
𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑠𝑎𝑚𝑝𝑙𝑒𝑠 𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑑 𝑎𝑠 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒 𝑤ℎ𝑖𝑙𝑒 𝑡ℎ𝑒𝑖𝑟 𝑡𝑎𝑟𝑔𝑒𝑡 𝑣𝑎𝑙𝑢𝑒 𝑖𝑠 0′ ′  

𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒 𝑠𝑎𝑚𝑝𝑙𝑒𝑠 𝑖𝑛 𝑡ℎ𝑒 𝑑𝑎𝑡𝑎𝑠𝑒𝑡
 

By taking the advantage of the difference between the TPR 

and TNR, the PPS overcomes the bias of the simple 

classification rate on either the positive samples or negative 

samples.  That is, it addresses the issue of imbalance of the 

dataset and makes an evaluation of the classifier performance 

on a balanced basis for both the positive and the negative 

classes with respect to the highly imbalanced presence of the 

samples in the dataset.  The PPS values in range from -1 to +1, 

such that -1 indicates a total miss of classification with the 

selected features for any samples and +1 means a 100% 

correct classification for all the samples in the dataset, while a 

zero values represents a 50% accuracy for samples of both 

classes.   

It was known that different machine learning and 

classification algorithms have different functional 

characteristics and performance outcomes.  Choosing multiple 

classification algorithms in the feature verification stage of 

our feature selection process and comparing their overall 

performance would generate a more reliable and justifiable 

result, therefore, helping evaluating the effectiveness of the 

FMC_SELECTOR method.  Thus, three popular classification 

algorithms, the K-Nearest Neighbor (KNN) [22], Linear 

Regression [23], and Naive Bayes [24][38] were selected for 

evaluating the feature selection results in our experiments.  

These algorithms are chosen mainly due to their simplicity 

and effectiveness proven by other researchers in machine 

learning practices.   

V. Experiments and Results  

V.1. Results and Analyses on ‘Data Colorectal 08 to 13 

Weighted’ Dataset 

The first data set we experimented with is called the “Data 

Colorectal 08 to 13 Weighted” which is a dataset queried from 

the Healthcare Cost and Utilization Project National Inpatient 

Sample (HCUP-NIS) database for adult patients with a 

diagnosis of colorectal cancer who underwent colorectal 

resection [37]. The dataset contains a total of 77,603 instances 

(the rows) but only 4.55% of them are positive cases i.e., the 

dataset is very highly imbalanced. Moreover, for most of the 

cases there are only 1 or 2 non-zero values among the 29 major 

attributes (the columns) of this study. That is the data is also 

very highly sparse (sparsity = 90.35%). 

In the pre-processing step, the correlation computation 

function corr() in the SKLearn package with Spearman rank 

correlation method [3] was utilized to obtain the correlation 

coefficients for each pair of the features.  The result is shown 

in figure 2 below where the darkness of the cells in the plot 

represents the relative values of the coefficients with white 

being high (most correlated) and black being low (less 

correlated) for the correlation. As we can see from the figure 

that the features of this dataset have an overall low correlation 

with each other.   

 

Figure 2. Correlation map for features in “Data 

Colorectal 08 to 13 Weighted” dataset 

During the feature selection process, all the samples in the 

dataset are shuffled randomly for both the training set and 

testing set.  After applying our MCE algorithm directly on the 

features of the dataset, all the features are ranked according to 

the MCE(q) values.  Table 1 below shows the top 9 features 

selected by the MCE algorithm on the dataset, with an order 

of from most significant to less significant (numbering 1 to 9) 

according to the MCE(q) values (due to the nature of the cross-

entropy computation, lower values of MCE(q) means the 

higher level of significance of the feature q.). 
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Rank Feature MCE value 

1 CM_COAG 0.128306 

2 CM_CHF 0.153914 

3 CM_LYTES 0.156126 

4 CM_WGHTLOSS 0.159834 

5 CM_PULMCIRC 0.161825 

6 CM_RENLFAIL 0.165845 

7 CM_PERIVASC 0.166367 

8 CM_PARA 0.167449 

9 CM_TUMOR 0.180618 

Table 1. Feature selection result and MCE values for the 

experiment dataset 

The above results were compared with those obtained by two 

benchmarks, the Univariate Feature Selection method, and the 

Recursive Feature Elimination method [13]. The results are 

listed in the table 2 below. The table shows that the MCE 

algorithm selected almost the same group of features as the 

benchmark methods but in different orders. 

 

Rank MCE Algorithm 
Univariate 

Selection 

Recursive 

Feature 

Elimination 

1 CM_COAG CM_COAG CM_CHF 

2 CM_CHF CM_LYTES CM_COAG 

3 CM_LYTES CM_CHF CM_LYTES 

4 
CM_WGHTL

OSS 

CM_WGHTL

OSS 
CM_PARA 

5 
CM_PULMCI

RC 

CM_PERIVA

SC 

CM_PERIVA

SC 

6 
CM_RENLF

AIL 

CM_PULMCI

RC 

CM_PULMCI

RC 

7 
CM_PERIVA

SC 

CM_RENLF

AIL 

CM_RENLF

AIL 

8 CM_PARA CM_TUMOR CM_ULCER 

9 CM_TUMOR CM_PARA 
CM_WGHTL

OSS 

Table 2. Comparison of features selected by the MCE 

algorithm with benchmark methods 

To validity the significance of the selected features, we 

applied the PPS approach to the MCE results.  Three different 

pattern classification methods were used in PPS as discussed 

in last section, and were applied to different groups of 

combinations of the selected features versus non-selected 

features from the MCE algorithm.  The splitting ratios of 

80/20, 75/25, and 70/30, respectively, were used for setting up 

the training set and testing set on the dataset.  Figure 3 shows 

the PPS collections as the test results in terms of the 

classification rates in comparison with the use of (1) the top 3 

features selected by our MCE algorithm versus the bottom 3 

features, (2) the top 5 features versus the bottom 5 features, 

and (3) the top 9 features versus the bottom 9 features.  The 

results of these test cases were shown from left to right on each 

of the plots with the different classification algorithms and 

under the different settings of the training and test sets, 

respectively.   

 
(a) For 80 to 20 split of training and test data 

 
(b) For 75 to 25 split of training and test data 

 
(c) For 70 to 30 split of training and test data 

Figure 3. Comparison of PPS for feature groups selected 

(top3 or 5) by the MCE algorithm with those not selected 

(bottom 3, 5, or 9) features on the “Data Colorectal 08 to 13 

Weighted” dataset  

From the figure 3, it is seen that the features selected by the 

MCE algorithm performed much better than the non-selected 

features.  The result verifies that the FMC_SELECTOR 

framework was able to select the significant features and 

helped to generate better machine learning models for the 

given dataset. 

In addition to the comparison of the performance of the 

features among those selected and not selected by our 

FMC_SELECTOR as shown in the figure 3 above, tests for 

the comparison of our method (marked FMC) with the two 

benchmarks feature selection methods, namely the Univariate 

Feature Selection (marked as UI) and the Recursive Feature 

Elimination (marked as RFM) were conducted with the PPS 

results shown in figure 4.  Note that though our FMC method 

selected the same top 9 features from the dataset as that did by 

the UI and RFM methods, the order of these top features were 

different from each other, as shown in table 2 above.  We thus 

selected the top 3 features and top 5 features of the FMC 
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method as representatives to compare the performance with 

the top 5 features from the UI and RFM methods.  The PPS 

for these teat cases are shown in plots with 80 to 20, 75 to 25, 

and 70 to 30 splitting of the samples in the datasets shown in 

the (a), (b), and (c) of figure 4, respectively.  As it can be seen 

from the figure that the overall performance of the 

FMC_SELECTOR results, though somehow mixed, is mostly 

comparable with the other two benchmarks, with better results 

shown in some of the test cases. 

 
(a) For 80 to 20 split of training and test data 

 
(b) For 75 to 25 split of training and test data 

 
(c) For 70 to 30 split of training and test data 

Figure 4. Comparison of PPSs for different groups of the 

top 3 or 5 features selected by the MCE algorithm with the 

benchmark methods on the “Data Colorectal 08 to 13 

Weighted” dataset. 

V.2. Results and Analyses on ‘Kddcup99_csv’ Dataset 

“Kddcup99_csv” is another dataset we used for testing and 

verifying our MCE algorithm and the FMC_SELECTOR 

framework. The “Kddcup99_csv” was first posted and used in 

the Third International Knowledge Discovery and Data 

Mining Tools Competition.  There were 32 features and 1 

target with 97,277 positive samples and 2,204 negative 

samples used in our research experiment. Doing the same as 

for the last experiment dataset, the correlation coefficients of 

the features of this dataset were obtained first in the pre-

processing step by applying the Spearman rank correlation 

method.  The results are shown in figure 5 below.  Criterion 

for determining whether two features are correlated in this 

research is set for the correlation coefficient corr(x, y) being 

either >= 0.6 or <= -0.6.  Five correlated feature groups were 

identified in this dataset from the computation results, as 

shown in table 3 below.  In table 3, the most representative 

features from each correlated feature group are highlighted in 

bold.  Those features are add to the candidate feature set while 

the others were placed into the non-selected feature set.  

Features with high coefficient values, with constant values for 

all samples, and without any true positive samples, such as the 

“wrong_fragment,” “Inum_outbound_cmds,” and 

“is_host_login,” were removed from the candidate list 

therefore not consider in the further steps of the feature 

selection process.   

 

Figure 5. Correlation map for features in 

‘Kddcup99_csv’ dataset 

Correlated 

feature 

group 1 

hot Inum_co

mpromis

ed 

  

Correlated 

feature 

group 2 

Srv_serr

or_rate 

serror_ra

te 

  

Correlated 

feature 

group 3 

Rerror_r

ate 

Srv_rerro

r_rate 

Dst_hos

t_error

_rate 

Dst_host

_srv_ser

ror_rate 

Correlated 

feature 

group 4 

Same_sr

v_rate 

Diff_srv

_rate 

  

Correlated 

feature 

group 5 

Dst_host

_same_s

rv_rate 

Dst_host

_diff_srv

_rate 

Dst_hos

t_same_

src_port

_rate 

 

Table 3. Correlated feature groups identified from the 

correlation coefficient computation.  The most representative 

features from each group are highlighted in bold.   

The MCE(q) computations were carried out on each feature q 

in the candidate set after the pre-processing.  Table 4 below 

shows the top 9 features selected by the MCE algorithm on the 

“Kddcup99_csv” dataset, in ranks according to the MCE(q) 

values. 
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Rank Feature MCE value 

1 lnum_compromised 0.002077997 

2 logged_in 0.111462721 

3 srv_serror_rate 0.11376247 

4 dst_host_same_srv_rate 0.117019266 

5 serror_rate 0.118823295 

6 same_srv_rate 0.121410364 

7 srv_diff_host_rate 0.150033709 

8 dst_host_rerror_rate 0.229146162 

9 dst_host_srv_rerror_rate 0.230147076 

Table 4. Feature selection result for “Kddcup99-csv” dataset 

Table 5 below compares the top 9 features selected by the 

MCE algorithm with those obtained by the two benchmark 

methods, the Univariate Feature Selection Method and the 

Recursive Feature Elimination Method, respectively. 

 MCE 

Algorithm 

Univariate 

Selection 

Recursive 

Feature 

Elimination 

1 lnum_compro

mised 

urgent num_failed_login

s 

2 logged_in lroot_shell lnum_compromis

ed 

3 srv_serror_rat

e 

num_failed_logi

ns 

lroot_shell 

4 dst_host_sam

e_srv_rate 

lnum_compromi

sed 

lsu_attempted 

5 serror_rate is_guest_login lnum_shells 

6 same_srv_rate serror_rate srv_serror_rate 

7 srv_diff_host

_rate 

dst_host_same_s

rc_port_rate 

diff_srv_rate 

8 dst_host_rerro

r_rate 

dst_host_serror_

rate 

dst_host_same_sr

c_port_rate 

9 dst_host_srv_

rerror_rate 

dst_host_srv_dif

f_host_rate 

dst_host_rerror_r

ate 

Table 5. Features selected on “Kddcup99_csv” by MCE 

algorithm in comparison with benchmark methods 

Again we see that top 9 features selected by the MCE 

algorithm have a large percentage of overlap with those 

features selected by the comparing benchmark methods, but 

in different rank positions.   

Validation of the significance of the selected features with 

respect to the non-selected features was conducted first by 

applying the PPS evaluations.  We compared the top 3, top 5, 

and top 9 features selected by the MCE algorithm with the 

bottom 3 and bottom 5 of non-selected features in the 

experimentation.  The results are shown in Figure 6 where the 

PPSs for the non-selected features are plotted by the left and 

the PPSs for the selected feature are plotted by the right of 

each plot.  The verification is again done with the tests on 

applying the three classification models: KNN, Linear 

Regression, and Naïve Bayes, and with the dataset splitting of 

80 to 20, 75 to 25, and 70 to 30, respectively.  It is obvious 

from the figure that the classification performance with the use 

of the selected features significantly outperforms the results 

from the non-selected features. 

 
(a) For 80 to 20 split of training and test data 

 
(b) For 75 to 25 split of training and test data 

 
(c) For 70 to 30 split of training and test data 

Figure 6. Comparison of PPS for feature groups selected 

(top3 or 5) by the MCE algorithm with those not selected 

(bottom 3, 5, or 9) features on the “Kddcup99_csv” dataset 

Verification experiment was also conducted to compare the 

PPS scores of the MCE algorithm with the two benchmark 

methods on the top ranked features selected. The PPS data in 

Figure 7 shows that the features selected from the MCE 

algorithm performed very compatible with those from the 

two-benchmark methods, though not appearing to be in a clear 

advantage over the other two on the “Kddcup99_csv” dataset.   

 
(a) For 80 to 20 split of training and test data 
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(b) For 75 to 25 split of training and test data 

 

(c) For 70 to 30 split of training and test data 

Figure 7. Comparison of PPSs for different groups of the 

top 3 or 5 features selected by the MCE algorithm with the 

benchmark methods on the “Kddcup99_csv” dataset. 

The verification results with the use of the two experimental 

datasets do indicate that the FMC_SELECTOR framework for 

feature selection is proven to be a viable method and in right 

direction for ranking binary valued feature in terms of their 

significance for improving model accuracy selection of 

classifications on the datasets, though further research and 

development are needed to improve its performance. 

VI. Summary 

The need to know the cause and effect relations of data entities 

in many real world applications calls for computational 

mechanisms dedicated to the identification of the dominant 

features in a dataset in addition to the high accuracy of pattern 

classifications and model predictions.  Sparsely populated and 

binary valued features present a challenge to the accurate 

computation of the discriminative significances of these 

features, especially for the class sample size highly 

imbalanced datasets.  There was a lack of previous research 

on specific methods working with binary valued features and 

imbalanced datasets.  The research presented in this paper thus 

addressed this concern and introduced a new method that was 

focused on an quantitative measurement of the discriminative 

significances of the features so as to provide a rank and a 

selection of the features that can be used further to improve 

the accuracy of the machine learning models to be built on the 

binary features of the dataset.   

The cross-entropy based formulation of the MCE 

computational scheme was successfully applied within the 

framework of FMC_SELECTOR to establish the coherent 

relations between the features of pattern classes and the target 

attributes under the conditions of the imbalance distribution 

and sparsity of the binary valued features.  An evaluation 

mechanism named PPS was introduced in this research to 

analyze the performance of machine learning models 

generated by the selected features and to verify the 

significance of these features selected by the MCE algorithm.  

The verification process of the feature selection focused on the 

classification performance with PPS applied as a balanced 

measurement on both the positive class and negative class 

samples to overcome the biases of some other common 

classifier evaluators.  The comparison and analysis of the PPS 

outcomes with the features selected by the benchmark 

methods show that the FMC_SELECTOR was effective in 

terms of to identify the most significant features in the given 

experiment datasets.   
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