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Abstract: Representations are essential in learning of natural 

and artificial systems due to their ability to identify characteristic 

patterns in the sensory inputs. In this work we examined latent 

representations of images of basic geometric shapes and 

handwritten digits as a basis for sharing semantic information 

about observations in a collective of unsupervised generative 

learners. Individual models trained in an unsupervised process 

with minimization of generative error were exposed to a process 

of synchronization of symbolic tokens associated with 

characteristic regions in the latent representations identified 

with two different strategies. It was demonstrated that 

conceptual representations with good decoupling of 

characteristic patterns can be produced reliably and consistently 

with models of unsupervised generative self-learning; and that a 

simple process of conceptual synchronization can enable 

effective sharing of information between individuals in a 

collective by associating shared symbols with latent regions 

correlated with characteristic patterns in the sensory inputs. The 

results demonstrate the potential of conceptual latent 

representations as a natural platform for development of 

abstract concept intelligence and communications.  

 
Keywords: machine learning, unsupervised learning, 

representation learning, concept learning, clustering.  

 

I. Introduction 

Representation learning with the objective to identify 

patterns in the observable data has a well-established record 

in the discipline of machine learning. Informative 

representations obtained with Restricted Boltzmann Machines 

(RBM) and Deep Belief Networks (DBN) [1, 2], different 

flavors of autoencoders [3] and other models in unsupervised 

learning (unsupervised feature extraction) allowed to improve 

accuracy of subsequent supervised learning with conventional 

methods [4].  

Informative representations produced with models of 

unsupervised generative self-learning were used in a growing 

number of applications to identify characteristic patterns, or 

concepts, classes of interest in the observable data. Generative 

models based on artificial neural networks have a strong 

potential in such problems due to their capability of universal 

approximation [5], making them suitable for processing data 

of virtually any type and complexity including live images, 

video streams and other types of complex sensory data.  

Studying underlying structure of latent representations of 

generative models can be instrumental due to the observed 

effect that they can capture essential characteristics of 

distributions in the sensory environment represented by 

training datasets. Understanding this structure can offer 

essential insights into how to improve learning ability of 

models especially in problems and environments where large 

amounts of confident prior knowledge is not available. 

A. Related Work 

Concept learning from unsupervised observation in artificial 

learning systems was attempted in a number of studies 

beginning from works in the late 1990s – early 2000 that 

demonstrated noticeable improvements in the performance of 

supervised training after unsupervised processing 

(unsupervised feature selection, etc.) with self-learning 

models such as RBM, DBN, different types of autoencoder 

models and other types and architectures. This standard 

practice, commonly used as a mean to achieve higher accuracy 

of subsequent  supervised training and classification of known 

concepts, can be seen, in fact, as an intriguing effect as 

generative models have no access to the externally defined 

classes in the process of unsupervised training, and an 

improved correlation between features obtained in 

unsupervised processing of training data and the external 

classes could therefore point at a possibility of a link between 

unsupervised generative learning, and “pre-known” concepts 

de-fined externally. The existence of such a link is not entirely 

obvious, and its nature and origins merit, in the authors view, 

an in-depth investigation. 

Earlier results obtained with generative neural network 

models include applications of deep autoencoder models of 

different architectures such as sparse, variational, 

convolutional [6,7] and others to produce informative 

representations of complex data such as different types of 

images [8-10], network and Internet [11] and other types of 

data [12,13]. These results demonstrated that structured latent 

representations correlated with external higher-level concepts 

can be produced under certain conditions imposed in training, 

such as generative accuracy and redundancy reduction by 

models of unsupervised generative learning. 

An unsupervised structure of this kind that does not require 

massive amounts of labeled data to produce and it can be 

hypothesized that it could be harnessed to develop effective 

methods of learning in the environments with scarcity of prior 

knowledge about the content or characteristics of the 
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distributions in sensory data. Given the constraints of the 

problem, informative representations obtained with methods 

and models of unsupervised generative learning can be used 

as a platform, framework or “landscape” in which learning can 

progress effectively even with scarce learning data by using 

the informative structure in informative latent representations. 

The effect of categorization by higher-level concept in 

unsupervised learning, that is, emergence of latent structures 

correlated with external concepts as a result of unsupervised 

generative learning was reported in a number of studies. Le et 

al., [8] observed spontaneous formation of concept-sensitive 

neurons activated by images in certain higher-level classes 

with a deep sparse autoencoder architecture trained with 

massive arrays of images in an entirely unsupervised process 

without exposure to known concept semantics. Higgins et al 

[9] demonstrated decoupled structure of latent representations 

obtained with variational autoencoder models with different 

sets of images and underlined the importance of constraints 

such as redundancy reduction and generative ability in 

successful unsupervised learning by demonstrating 

unsupervised models capable to learn without massive 

supervision with images of different types. In [14] a 

spontaneous formation of grid-like navigation cells, similar to 

those observed in mammals was detected in a recurrent neural 

network with deep reinforcement learning. In [15] structure 

and topology of generative representations was described with 

a dataset of images of geometric shapes. 

Though undoubtedly significant, a common “chicken and 

egg” observation related to these results can be made: we have 

to know what to look for, before being able to verify how well 

a model has learned it. In other words, these models can 

provide some insights into the relationship between internal or 

native information structures that emerge in unsupervised 

learning and the external, explicit concepts but could not 

explain how it originates without certain domain knowledge, 

such as pre-labeled concept data.  

While important in proving the ability of generative models 

to learn successfully from unsupervised processing of sensory 

data of different types, origin and complexity, the question of 

“conceptual bootstrap” remained less explored: what are the 

internal, native information structures that can be associated 

with known external concepts? Besides, complex and specific 

architectural features of these models give rise to questions 

about generality of the observed effect and its applicability to 

other models and learning scenarios.  

In this work we attempted to approach challenges of both 

conceptual and practical nature in the investigation of 

conceptual structure in generative representations from 

several perspectives: first, by choosing a generative neural 

network architecture of limited complexity we intended to 

verify the general character of the effect of categorization in 

unsupervised generative learning; the second objective was to 

examine the question of origin of higher-level concepts; to 

approach it methods of evaluation and measurement of 

distributions of data in unsupervised latent representations 

were developed and verified. Finally, we investigated possible 

mechanisms of sharing information about sensory 

observations in a collective of generative learners, based on 

the structure emergent in the process of unsupervised 

generative learning. 

The rest of the paper is organized as follows: Section II 

contains a description of generative models and data used in 

the study. In Section III we describe the process of production 

of structured latent representations and synchronization of 

latent structure between individual learners. In Section IV the 

results of synchronization experiments are presented with 

different types of image data and methods of identification of 

latent structure. Finally, Sections V and VI contain a 

discussion of the results, their significance and relation to 

other results in the field of unsupervised generative learning 

and a synopsis of the work. 

II. Materials and Methods 

Models based on the architecture of convolutional 

autoencoder neural network [16] with strong dimensionality 

reduction to a low-dimensional latent representation were 

used to produce structured latent representations of a dataset 

of images of basic geometric shapes as described in this 

section. Neural networks are good candidates as generative 

learners of complex data types such as images, due to their 

capacity of universal approximation [5].  

Once the ability of the models to learn characteristic 

patterns (“concepts”) in the data has been established, the 

objective of the study was to demonstrate and verify their 

ability to synchronize individual concept structures identified 

in the process of unsupervised generative learning via a 

process of information exchange in a collective of learning 

models trained individually and independently). 

A. Convolutional Autoencoder Model 

Generative models of the architecture of a convolutional 

autoencoder had the encoding stage with convolution-pooling 

layers followed by several layers of dimensionality reduction 

with a single latent layer of size M. The resulting latent 

representation of the same dimension was defined by 

activations of the neurons in the latent layer.  

The decoding / generative stage was fully symmetrical to 

the encoder. Overall, the architecture had 21 layers and 

approximately 40,000 trainable parameters. The models were 

implemented in Keras / Tensorflow [17] and trained for 

minimization of the deviation between the training batches of 

images and their generations by the model (generative error) 

with categorical cross-entropy cost function (CCE). An 

architectural diagram of generative models used in the study 

is presented in Figure 1. 

 
Figure 1. Convolutional autoencoder architecture with 

dimensionality reduction. 

 Depending on the type of data, two flavors of generative 

architecture were used: flat and sparse. Flat models had a low-

dimensional latent layer of dimension M = 3 .. 5, i.e., 3 to 5 

latent neurons. These models were used with data of lower 

complexity representing images of geometric shapes (Section 

2.2). Sparse models had higher dimensionality of the latent 

layer, M = 20 .. 25, with L1 sparsity activation penalty 

imposed in training. These models were trained with the 

images of handwritten digits of higher conceptual complexity. 

Architectural parameters of generative models are provided in 

Table 1. 
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Model Flat Sparse 

Adaptation Convolution, 2-3 Convolution, 3 

Latent size 3–5  20–25  

Total layers 11 15 

Trainable  

parameters 

4 × 104 9 × 105 

Sparsity (2) No Yes 

Cost 

function 

MSE, CCE CCE 

(1) MSE: mean squared error; CCE: categorical cross-entropy 
(2) L1 regularization sparsity activation penalty 

Table 1. Architectural parameters. 

 

Both types of models produced low-dimensional 

representations of the training data. With flat models, 

representations were defined by activations of all latent 

neurons producing a latent vector space of dimension M. With 

sparse models, as a result of a sparsity penalty imposed in 

training, activations for most inputs had 2 to 4 active neurons, 

describing effective latent subspaces or “slices” of effective 

dimension F = 2–4 in the M-dimensional latent space (Fig. 2), 

indexed by neurons activated by inputs. 

 

 
Figure 2. Stacked structure in a sparse latent space. 

B. Data 

Datasets of grayscale images of basic geometric shapes: 

circles, triangles and grey-scale backgrounds of size 64×64 

were used to model simple yet realistic (i.e., minimally 

realistic) visual environments. While images represented 

simple shapes, the intent was for the characteristic patterns in 

the datasets to have certain realistic meaning for some 

primitive learning system, for example, different types of 

shapes associated with sources of food versus predators and 

general background.The first dataset, Shapes-1, consisted of 

600 grayscale images of circles, triangles and grayscale 

backgrounds with two representative samples per shape with 

variation in the size and contrast of fore / background. 

The second dataset, Shapes-2, contained 1,000 of grayscale 

images of circles, tri-angles and backgrounds with variation 

of the size in the range 0.3 – 1.0 of the image size, with 

variation of contrast of fore- vs. background for each size.  

To model more complex realistic visual environments, a 

dataset of handwritten digits (MNIST dataset, [18]) was used 

as well. 

C. Training 

A success of generative training was measured by the change 

in the validation cost function over the process of 

unsupervised training and the ability of trained models to 

generate a subset of images of the types represented in the 

training dataset (Fig. 3). 

 

 
Figure 3. Generative performance of trained models (top: 

input; bottom: generation by a trained mod-el) A: geometric 

shapes (flat model); B: handwritten digits (sparse model). 

  

A majority of learning models were successful in generative 

learning: 

• Geometrical shapes datasets, flat models: ~ 80% 

• Handwritten digits dataset, sparse models: 60 – 70%   

though a spread in the generative quality was observed 

among individual models in the ensemble. 

D. Encoding and Generation 

A trained generative model can perform two essential 

transformations of data as a result of an unsupervised training 

process that does not use labeled samples of pre-known 

concepts. The encoding transformation E, realized by the 

encoding stage of the model (tensor E(Input, L), Fig. 1), 

transforms a sample x in the observable space O to its encoded 

position y in the latent representation space R. The generative 

transformation G operates in the opposite direction, from the 

latent representation to the observable space and is realized by 

the generating stage of the model (tensor G(L, Out), Fig.1): 

 

 𝑦 =  𝑟𝑥  =  𝐸(𝑋);    𝑋′ = 𝐺(𝑦) (1) 

 

Straightforwardly but essential for subsequent analysis, the 

process of unsupervised training allows to decouple the 

encoding and generative stages of the model, so that not only 

an encoded image of an actual observation E(x) but any 

position y in the latent representation space R can produce an 

observable image via generative trans-formation (1).  

The transformations are also essentially independent: once 

the training phase completes, the parameters of the encoding 

and generative transformations are fixed and contained in the 

corresponding tensors, so that no information about the 

encoding stage is needed to generate an observable image of 

a latent position (1) and vice versa, no knowledge of 

generative parameters is needed for encoding. 

III. Synchronized Conceptual Representations 

A. Conceptual Representations 

In the first phase of the process of production of conceptual 

representations, the ability of models to create structured low-

dimensional latent representations correlated with 

characteristic patterns in the observable data was verified. It is 

supported by a number of earlier results [11-14] with data of 

different types and origin.  

Models of both types, flat and sparse, produced structured 

representations correlated with characteristic types of images 

in the training sets. Methods of density clustering [19] were 

used to identify density features in the latent representations 
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of trained models in an entirely unsupervised process. With 

the latent density structure identified in a clustering process, 

correlation of the produced structure with characteristic 

content of the data in the training sets was established by 

propagating positions of the identified structural features, for 

example, centers of density clusters, to the observable space 

with generative transformation (1). With all successfully 

trained models in the study, density structure obtained with 

this method showed a clear correlation with characteristic 

types of images in the datasets (Figure 4). 

 

 
Figure 4. Observable images of latent density clusters. A: set 

Shapes-2 (flat model); B: handwritten digits (sparse model). 

 

The ability of generative models to produce structured 

latent representations can be used to identify latent regions 

associated with internal or “natural” concepts in the observed 

data. Structured geometry of latent representations allows 

trained models to associate observations x in the observable 

space (that is, images) to internal or “natural” concepts T = 

{ Tk } via the relationship of containment of the encoded 

position of x in a characteristic region Rk in the latent 

representation as: 

 

 𝑟(𝑥) =  𝐸(𝑥) ∈ 𝑅𝑖 → 𝑥 ∈ 𝑇𝑖; 𝑇(𝑥) = 𝑇𝑖 (2) 

 

where T(x): natural concept associated with an observable 

sample x. 

As has been demonstrated earlier [16], characteristic 

concept regions can be identified by unsupervised methods 

such as density clustering or novelty/similarity based, 

signifying that association of sensory data to  concepts (2) can 

be obtained in an entirely unsupervised process that does not 

require labeled concept samples or any essential prior 

knowledge about the training dataset and for this reason has 

to be defined only by the internal characteristics of the data 

and generative architecture.  

Several strategies can be applied for this purpose as has 

been demonstrated in earlier studies [8,13], including entirely 

unsupervised methods that require no prior concept 

knowledge or semi-supervised ones, using small sets of 

concept samples. In this work, as an illustration of possible 

approaches, two different methods were used, though no 

attempt to optimize the performance was made. The first one 

is an application of a density clustering method, such as 

MeanShift and similar [19,20] to a representative sample of 

the dataset encoded to the latent space to produce a set of 

latent density clusters. Such methods are in the essence, 

unsupervised and do not require prior knowledge about 

conceptual content in the data.  

The second method is based on a similarity relationship 

between latent samples. In the first iteration, there is a single 

set of samples S1 defined by some similarity relationship, for 

example, “a triangle”. A geometry-based binary classifier 

such as Nearest Neighbor [21] for the concept associated with 

the samples can be obtained with a) the encoded set P1 = E(S1) 

representing in-class training subset; and b) a subset of the 

encoded general sample g, E(g) at the maximum distance from 

the center of P1.  The process is repeated iteratively for each 

new next concept, with positive samples of known concepts 

used as negative ones for the novel concept (refer to the 

Appendix for details). An internal concept Tk ∈ T can then be 

interpreted as: 1) the latent region associated via encoding and 

generative transformation (1) with a certain characteristic 

pattern in the observable data, for example, a type of 

geometrical shape or digit; 2) a symbolic token or index qk 

associated with conceptual regions by individual learning 

models, allowing to distinguish between them. As a result of 

this phase, a structure of concept features such as density 

clusters is produced, with an ability of a trained model to 

associate an observable sample to its internal or natural 

concept. 

B. Sparse Conceptual Representations 

Sparse representations are similar to the flat ones described in 

the preceding section, with an extension that clustering is 

performed independently in the low-dimensional subspaces or 

“slices” of the full M-dimensional latent space (Fig.2).  

The slices with highest populations of activations can be 

identified with a representative sample of input images 

encoded to the latent space; inputs are placed in a given slice 

if their most significant activations match the slice’s index (i.e. 

the tuple of latent coordinates, such as (i, j, k), i, j, k = 1 .. M) 

and achieve a minimal activation threshold. Then, density 

clustering can be applied independently in each slice on its 

population. The resulting structure of density clusters indexed 

by slices represents a complete generative structure or 

“landscape” in the latent space with a natural unique index of 

(slice, cluster). A subset of a generative landscape in the form 

of observable images generated from density clusters in 

several 3-dimensional slices of a 24-dimensional latent space 

is shown in Figure 4. 

C. Symbolic Representations 

An essential observation used in the rest of this work is that in 

addition to the ability to associate observable inputs to native 

concepts (2), generative models are also capable of 

interpreting symbols associated with concepts as 

representative instances or “prototypes” [22]. Concept 

prototypes can be defined in both latent (representation) and 

observable spaces. A representative latent instance tk of a 

concept Tk associated with a latent region Rk can be 

determined by several methods:  

• As a set of known samples or a function such as the mean 

of a set of known samples of the concept in Rk. 

• As a characteristic position in the latent region of the 

concept, for example, the center of an associated density 

cluster, the mean position of a cluster and so on. 

• Calculated from geometric parameters of the concept 

regions Rk, if it is known with sufficient detail, such as 

geometric center; and others.  

Then, a representative observable prototype Pk of the 

concept Tk can be obtained as: 

 

 𝑃𝑘 =  𝐺(𝑡𝑘) = 𝐺(𝑡(𝑅𝑘)) (3) 
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with t(T) = t(Rk) being the prototype-producing strategy that 

associates representative instances to a latent concept region 

as discussed earlier. In this work two different strategies were 

used: cluster centers identified with density clustering; and the 

mean position of concept samples identified by similarity 

relationship. Based on these observations it can be concluded 

that the unique index of a concept Tk or any symbol Sk 

uniquely associated with it can be interpreted as an observable 

image (prototype) of the concept as: Sk → Tk → tk → Pk (3).  

 The ability to interpret symbolic tokens as observable 

prototypes clearly distinguishes generative models from 

conventional methods of supervised learning, where such a 

task would not be meaningful. However, in this phase 

symbolic tokens of concepts are produced independently by 

each learner, for example, as an index of the identified density 

cluster and have no semantic meaning for other learners in the 

ensemble. For example, an internal index of a density structure 

in a sparse latent space of a generative model described in 

Section III.B can be associated with a different type of image, 

or not be valid at all for a different model. To enable the 

exchange of information about sensory observations in a 

collective, a process of synchronization of individual 

symbolic concept frameworks (concept maps) is needed. 

D. Detection and Interpretation 

The ability to exchange symbolic information about sensory 

observations is based on several necessary conditions:  

1. Structural consistency of latent representations, that can be 

defined as a set of latent regions associated with characteristic 

patterns in the observed data between the learners in the 

ensemble. For visual data similar to that used in the study, it 

is supported by the results in this study and a number of 

previous results [10,14,16].  

2. An ability to associate a symbol to a specific latent position 

or region. As discussed in Section III.A this ability naturally 

exists in models of generative learning in which symbols can 

be associated for example, with internal indices of latent 

features. 

3. An ability to produce an observable image of a latent 

position or region. This ability is also natural in generative 

models as a representative instance (prototype) function 

discussed in Section III.A and can be considered as 

“interpretation” of a latent position or a symbol associated 

with such. 

4. Finally, an ability to produce symbolic responses to 

observations that can be characterized as “detection”. 

The processes of interpretation and detection are illustrated 

in the Figure 5. 

 
Figure 5. Interpretation and detection in generative learning 

 The interpretation sequence (A, Fig. 5) is more 

straightforward and we begin with it. Suppose through some 

process of synchronization, internal indices or tokens of 

features in the latent structure (conceptual maps or landscape, 

as discussed in Sections III.A, III.B) are associated with a set 

of shared symbols, { Sk }. As a result of this process, a shared 

symbol can be interpreted by all or most individuals in the 

collective of learners via an ability to translate it to an internal 

token associated with a latent structure learned in generative 

training. Then a reception of a shared symbol can be translated 

to a token of a certain latent structure in the latent landscape 

via (1) and through the segment i.3, Fig.5 produce an 

observable interpretation of the communicated symbol. 

Importantly, interpretations of the same symbol by different 

individuals in the ensemble do not have to be identical and 

likely would not be, however based on the assumption of 

consistency, it can be expected that they would represent the 

same or similar types of observable patterns. In the detection 

pathway (B, Fig.5), a direct connection from an observation to 

a shared symbol is possible through segments d.1, d.2 in the 

diagram, i.e., as:  

Observation, x → latent image, y = E(x) → latent feature 

token, qk(y) → shared symbol, Sk, that can be communicated.  

 This strategy works well for simpler types of data with a 

small number of latent features, such as geometrical shapes 

datasets in this work. In this scenario, the likely outcome of 

the synchronization process is that all or most latent features 

would be associated with a shared symbol and detection can 

be implemented by a direct translation latent feature to symbol 

(“direct” strategy). However, with more complex data such as 

handwritten digits, it can be observed (Fig.3) that latent 

positions of characteristic observable patterns, such as a 

certain digit can be spread across multiple, and possibly large 

number of latent features. It can be less likely in this case that 

in the synchronization process all landscape features are 

associated with symbols and translation of an observation to a 

shared symbol via direct strategy may not be successful in all 

cases. A possibility to improve effectiveness of detection is 

provided by another function of generative models, that of 

generalization. Suppose, a more experienced learner in the 

collective has acquired, via certain process, an ability to 

classify sensory observations into general classes: K = { Kj }, 

for example, interpret multiple individual versions of a digit 

“0” as being in the same general class. Approaches in 

empirical, environment driven learning based on conceptual 

structure discussed earlier have been proposed [23] but will 

not be discussed here due to limitations of this study. Then, a 

different detection pathway (“abstraction” or “general”) 

would be possible as well (Fig.5 B, d3, d4): 

 Observation, x → general class, Kj(x) → shared symbol, Sj 

associated with class Kj. 

 The detection strategy above would provide a more 

confident detection of essential sensory patterns because it 

could incorporate cases where the natural feature associated 

with an observation, qk(x) has not been associated with a 

shared symbol in the synchronization process. The pathways 

of detection and interpretation described in this section, along 

with a process of symbolic synchronization of conceptual 

maps of individual learners in an ensemble provide a basis for 

sharing of sensory observations in a collective. 

E. Synchronized Representations 

In this section a basic implementation of the process of 

synchronization of conceptual maps between individuals in 
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the ensemble based on shared observation is described. It is 

intended to demonstrate a possibility of such a process and its 

possible role in the emergence of communication and other 

collective intelligence behaviors but optimization for 

effectiveness and performance was not intended at this stage. 

The intent of the experiment was to examine the ability of 

individual learners in a collective to synchronize their 

conceptual models of the sensory data via a simple process of 

group exposure to a limited subset of sensory inputs with 

production of a shared symbol (“orchestration”) and 

thereupon produce consistent interpretations of symbolic 

information.  

In the first, synchronization phase of the experiment, 

individual generative models were trained independently in an 

unsupervised generative process and conceptual models or 

maps were produced as described in Sections III.A, III.B as 

maps of density clusters indexed by a unique internal index. 

For flat models (datasets Shapes-1, Shapes-2) the index was 

an integer number associated with identified density clusters, 

ordered by population; for sparse models used with the dataset 

of handwritten digits, the index was an integer tuple (slice, 

cluster id) as discussed in Section III.B.  

For an individual model, a valid value of the index uniquely 

identifies corresponding latent feature in the conceptual map; 

but as commented earlier a given value of an index has 

semantical meaning only for a given individual and has no 

information value for other individuals in the group. A group 

of prepared models with individual conceptual maps was then 

shown a sequence of images of the types present in the training 

set, along with “shared” symbols S = { Sk }; for example, 

circles were associated with “c”, triangles with “t” and so on. 

The synchronization set thus consisted of pairs (Xi, Si) of 

sensory images and shared symbols and was consistent, that 

is, did not contain contradictory associations. Upon each 

observation, learners were instructed to associate the symbol 

associated with the shown image to the latent prototype of the 

image obtained with (3).  

The process created an association or “dictionary” allowing 

translation of internal indices qk to and from shared concept 

symbols Sk, and the models in the group are considered 

“synchronized” (Figure 6). For models with an ability to 

generalize and classify observations to general concepts as 

discussed in Section III.D an additional synchronization 

sequence associating the identified concept of the 

synchronization image with the shared symbol. Such a 

strategy can improve the effectiveness of the detection due to 

incorporation of multiple latent features into a single general 

concept (“general” strategy, Section III.D). 

 

 
Figure 6. Synchronization process. Top: direct; bottom: with 

generalized concept classifier. 

 In the verification stage of the experiment, individual 

learners synchronized via the described process were 

presented with a sequence of shared symbols such as: “t, c, t, 

c, b, t …” and instructed to produce interpretations of symbols 

as observable proto-types or interpretations, associated with 

them. Finally, as discussed in Section III.D, the detection 

sequence modeling production of symbolic communications 

of sensory observations was examined as well. For flat models 

with the data of lower complexity, the sequence based on 

direct association of an observation to latent feature was tested 

(Fig.5, B segments d1, d2). For sparse models with more 

complex handwritten digits images, the pathway based on 

generalization (Fig.5, B segments d3, d4) was used. If the 

assumptions of the study were correct and learning and 

synchronization processes were successful, interpretations of 

shared symbols by individual models would be consistent, 

supporting the ability to share information about sensory 

observations in the collective via exchange of shared symbols. 

IV. Results 

A. Conceptual Representations 

In experiments with individual models, it was confirmed that 

the latent regions containing the representations of different 

types of images were connected and continuous. For a subset 

of images S of the same type, for example, circles in the 

observable space, generated image of the mean of the encoded 

representations of S in the latent space R was of the same type, 

indicating a connected topology of concept regions. This 

observation was confirmed by detailed investigation of the 

topology of the latent space [16] demonstrating a structure of 

well-defined connected concept regions separated by 

boundary surfaces of lower dimensionality. 

 An analysis of the structure of latent representations of 

individual models trained with the same dataset confirmed the 

assumption of structural consistency. Generative training 

produced latent representations with consistent structure that 

was confirmed in the experiments with different instances of 

trained models (Table 2, sparse model, MNIST dataset). 

 

Model instance Sparse-1 Sparse-2 Sparse-3 

Size 474 396 485 

Recognition 0.973 0.975 0.971 

All digits  

represented 

True True True 

Highest  

representation 

0, 7, 3 0, 7, 1 4, 7, 0 

Lowest 

representation 

4, 6, 9 2, 5, 6 2, 8, 6 

Size: the number of non-empty density clusters 

Recognition: the fraction of the landscape associated with 

recognizable digits  

Representation: slices with highest / lowest population 

Table 2. Consistency of latent landscape. 

 

The findings in this section were consistent with results of 

other studies [14,16] indicating consistency of latent structure 

in the representations of generative models trained with 

similar data. 

B. Symbolic Representations 

Methods described in Sections III.A, III.B were used to 

produce conceptual maps following generative training with 

datasets Shapes-1, Shapes-2 (flat models) and MNIST (sparse 

models). 

With the Shapes-1 dataset, a density clustering method 

(MeanShift) was used with a general sample of images 

encoded to the latent space, producing a set of density clusters 

ranked by the size (i.e., the population) of the cluster. The 

index of the cluster was used as the unique concept token qk. 
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Concept prototypes were defined as the center positions of the 

identified density clusters. 

With the Shapes-2 dataset, similarity-based kNN classifiers 

were produced for concepts as described in Section III.B. The 

accuracy of concept identification is shown in Table A1 

(Appendix). Concept prototypes were associated with 

geometrical means of the representative latent instances of the 

concepts.  

With the MNIST dataset, a sparse latent landscape was 

produced indexed by a two-dimensional integer tuple as 

described in Section III.B. Concept prototypes were defined 

as the center positions of the identified density clusters. 

As a result of this process, each trained model had an 

individual concept map produced with the ability to associate 

sensory inputs to internal concept tokens, and produce an 

observable prototype for a given concept token. 

For interpretation pathway, with flat models only direct 

interpretation sequence based on association of shared symbol 

– latent feature, (Sk, qk) was examined. A general classification 

ability, as discussed in Section III.E is likely to improve the 

effectiveness of interpretation; it was illustrated with one of 

the groups of sparse MNIST data models. 

 With the detection pathway, the effectiveness of symbolic 

response was measured as follows: 

• Shapes-1 models (flat): direct strategy (d.1, d.2, Fig.5 B) 

• Shapes-2 models (flat): direct strategy (d.1, d.2, Fig.5 B) 

• MNIST models (sparse): direct and general strategies 

(Fig.5 B) 

The effectiveness of interpretation was measured in a group 

of three independently trained models as: the rate of consistent 

interpretation Ic (all models produced consistent and correct 

interpretation of a test image; the rate of a partial agreement Ip 

(majority of models produced consistent and correct 

interpretation) and the rate of inconsistent interpretation, If. 

The effectiveness of detection was measured in a group of 

two independently trained models as: the mean rate of a 

symbolic response to a sensory stimulus, Dr; and the mean rate 

of a correct response to a sensory stimulus Dc, between the 

models. 

C. Synchronized Representations 

The description the groups of generative models with 

synchronization and detection strategies used in the 

synchronization experiment are provided in Table 3. Each 

group contained several independently trained models with 

the same unsupervised dataset. Due to more complex nature 

of the MNIST data, a larger synchronization sample was used 

(up to 10 synchronization images per digit). 

 

Group Shapes,1 Shapes,2 Mnist,1 Mnist,2 

Size 3 3 3 3 

Type flat flat sparse sparse 

Detection direct direct direct general 

Prototype density mean density density 

Sample* 10 10-15 30-100 30-100 
* Size of synchronization sample 

Table 3. Synchronization and detection strategies. 

 

The results of the experiment measuring the effectiveness 

of interpretation and detection strategies as described in 

Section IV.C are presented in Table 4. With MNIST (digits) 

data, three digits were synchronized: 0, 1, 3. 

 

Group Shapes,

1 

Shapes,

2 

Mnist,

1 

Mnist,

2 

Interpretation, 

Ic 

0.92 0.88 0.77 0.77 

Interpretation, 

Ip 

0.96 0.93 0.98 0.98 

Interpretation, 

If 

0.04 0.07 0.02 0.02 

Detection, 

Dr 

0.97 0.96 0.17–

0.59 (1) 

0.74–

0.96 (1) 

Detection, 

Dc 

0.93 0.99 0.97 0.92 

 (1) Digits, “0” (lowest) to “1” (highest) 

Table 4. Synchronization and detection, results 

 

Comparing the effectiveness of detection strategies for 

models MNIST it can be concluded that generalization 

strategy allowed to significantly improve detection rate 

compared to direct detection via “tagged” latent features. The 

cause of failed interpretation i.e., “disagreement” between 

individual models has been identified as a variation in the 

generative structure between the latent position of the 

synchronization image and the center of the associated latent 

cluster from which an observable prototype was produced. By 

employing more sophisticated prototyping strategies it should 

be possible to improve these results.  

Examples of the output of the interpretation experiment for 

models in groups Shapes-2 and MNIST are shown in Figure 

6.  

 

 
Figure 7. Interpretation of symbolic information following 

synchronization. Models: Shapes-2 (top), MNIST (bottom). 

It can be noted that though the symbols were synchronized 

between the learners, each one was producing its own, 

individual interpretation of the transmitted symbolic 

information. For example, the interpretation of the 

background image (“b”) by individual models in Figure 6 was 

noticeably different, differences in the individual prototypes 

of the types of images in the MNIST dataset (Fig.6, bottom) 

can be observed as well. In some observed cases, individual 

models produced different internal indexing of the concept 

clusters: (0, 1, 2) vs. (0, 2, 1) for background, circles, triangles, 

models Shapes-1. Nevertheless, the synchronization process 

associated correct shared symbols to internal indices, allowing 

consistent interpretations of the shared information by 

individual models. 

A simple structure of latent representations of the geometric 

shapes with a small number of latent features data makes 

synchronization process straightforward and effective in these 

cases. It is indicative of the generality of the method that it 

works with certain effectiveness with significantly more 
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complex and realistic images of handwritten digits with 

significantly more variable content of characteristic patterns. 

V. Discussion 

A possibility to use structured generative representations of 

sensory data, including of more complex types such as real-

world images with significant variation of content for 

successful environment-driven learning of concepts can be 

instrumental for a number of reasons. 

 First, it offers a direction for studying and modeling natural 

learning, methods and strategies based on direct observation 

of the sensory environment; with minimal confident samples 

obtained incrementally in empirical interactions with the 

environment; in a flexible process based on empirical trials, 

not dependent on availability of known concept data upfront, 

before learning process can begin. It can be hoped that models 

and systems designed on these principles can be more 

effective in the environments where confident knowledge of 

the domain is not available, as well as contribute to 

investigation of emergence and evolution of intelligent 

functions and behaviors. 

 Secondly, it can provide essential insights into the origins 

of higher-level concepts and concept-based intelligence. 

According to the results presented in this and a number of 

other studies, concept prototypes can emerge in generative 

processing of sensory data as native structures in generative 

representations related to and correlated with characteristic 

common patterns in the sensory inputs. Essential conditions 

for emergence of such structured representations appear to be 

generative accuracy, that is, encoding sufficient information 

about the observed distributions in the latent space, and 

redundancy reduction [10,14]. 

 The line of investigation based on unsupervised structure 

emergent in representations of successful generative models 

can provide a solution to the conceptual “chicken and egg” 

puzzle: if true instances of higher-level concepts are needed to 

analyze and determine their representations, how can they be 

defined and what is their origin? Methods of analysis of 

unsupervised generative representations dis-cussed here allow 

to associate origins of general higher-level concepts in the 

sensory data with characteristic latent structures that can be 

determined with entirely unsupervised methods and without 

any prior knowledge of external concepts. 

 As the results in Sections III.A, III.B appear to suggest, 

concepts in this process may not emerge as a single broad class 

with subsequent specialization (hierarchical stratification). 

Rather, concept-associated features such as density clusters 

can be spread across the components of a complex latent space, 

such as stacked low-dimensional slices observed in this work. 

Some concepts can be associated with relatively small number 

of latent structures in the same low-dimensional slice (i.e., 

produced by a constant group of latent neurons). Other 

concepts can be distributed between different slices (Fig. 4), 

encoded by variable groups of neurons. Generalization of 

multiple prototypes such as concept-associated clusters into a 

single concept class can happen in a process of empirical 

testing as described in Section III.D. 

 For a brief illustration of this point, let us consider a 

concrete example. Suppose we have a single positive instance 

of a concept of interest, for example in the context of the work, 

an image a digit “2”. There can be different latent regions 

associated with different variations of representations of the 

digit written by different individuals in the dataset. Further, 

suppose an early iteration of a classifier produced a positive 

prediction for a different version of the same digit, located in 

a different cluster, and slice. It is possible for example, due to 

relative proximity of the latent positions of the samples in the 

full latent space.  

A positive prediction would cause an empirical test of the 

identified input sample. If the test confirms similarity of the 

outcomes (for example, similar amount of useful substance 

obtained in the trial), the sample can be recognized as another 

true positive representative of the concept, and the model of 

its distribution in the latent space can be updated with a 

possibility of improvement in the accuracy the concept 

classifier. The process driven by empirical interaction with the 

environment can continue until confident recognition of the 

concept is achieved. In this process, generality of concepts 

emerges as a synthesis of characteristic latent features 

associated with common patterns in the sensory data and 

empirical trials, from the lower, “flat” levels of latent structure 

up, rather than in a hierarchical model, top down. 

 Another observation pointed to the character of latent 

encoding and landscape learning as essentially geometrical in 

nature. While proximity-type classifiers such as kNN were 

capable of successfully leaning concept classes in an iterative 

process with minimal empirical samples (Table 4, Section 

3.4.3) classifiers of several other types including neural 

network models such as perceptron [24] and SVM [25] were 

unable to interpret information encoded in the latent positions 

and produced strongly overfitted classifiers incapable of 

successful learning. Investigation of geometrical and 

topological properties of generative representations could 

provide further in-sights into learning processes based on 

generative latent structure. 

 Interestingly, recent results in experimental neuroscience 

have demonstrated commonality of informative low 

dimensional representations with small number of 

participating neurons in processing of sensory information of 

different types, including visual, audio, olfactory [26,27] in 

neural systems of animals and humans. The complexity of 

neural network models in this work, in the order of 104 - 105   

neural parameters, was similar to that of some primitive 

biologic organisms, comparable to that of jellyfish, snails and 

leeches [28,29] indicating that an ability to construct simple 

conceptual models of sensory environments could be within 

capacity of such organisms, although it does not prove the 

ability to communicate that essentially depends on developing 

more complex interpretation and synchronization behaviors. 

Effectiveness of informative low-dimensional representations 

in interpretation of sensory environments thus provides an 

interesting and exciting connection between learning 

processes of artificial and biological systems. 

 Harnessing the informative structure of latent landscape in 

the initial phase of learning when confident data can be very 

scarce allows “kick start” an iterative and incremental learning 

process based on empirical interactions with the environment. 

Such a process of learning with minimal samples resembles 

learning of natural bio-logical systems [30] and it can be 

hoped that further investigation along the directions outlined 

in this work may produce models that are flexible, adaptive 

and effective in learning via direct interaction with the sensory 

environment. 
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VI. Conclusions 

The results presented in this work demonstrated a possibility 

of consistent interpretation of symbolic information via the 

process of synchronization of individual latent concept maps, 

that can provide a basis for communication of essential 

information about observations between individuals with 

similar architecture of processing sensory information in 

unsupervised generative learning with the sensory inputs from 

the environment. 

It can be noted that despite some similarities, the process of 

symbolic synchronization is not closely related to supervised 

learning. First, synchronization sets of observations can be 

very small, down to single instances per concept. Secondly, 

and more importantly, synchronization is not teaching or 

training the models to interpret sensory inputs as individual 

learners are capable of interpreting sensory inputs im-

mediately upon production of conceptual maps based on 

unsupervised landscape created in unsupervised generative 

learning; the purpose of synchronization process is rather to 

allow sharing of symbolic information about observations of 

the environment by introducing shared communication 

symbols that can be  translated by individual learners in a 

collective to and from their private conceptual maps. This is 

possible in a collective of learners with similar generative 

architecture that produces consistently structured latent 

representations via a process of orchestrated observation as 

described and examined in this work. 

Experiments in the study demonstrated that relatively 

simple social behaviors based on simultaneous observation 

can result in synchronization of symbolic conceptual maps of 

the environment in a collective, with latent representations 

emergent in unsupervised generative learning providing a 

basis for a shared semantic framework associated with 

principal natural concepts in the sensory data. Such 

frameworks, as shown by the results in Section VI.C can serve 

as a natural foundation of the capacity of communication and 

sharing of semantic information about the observed 

environment. 

It was shown that these abilities can be well within learning 

ability of artificial and biological learning systems even of 

limited complexity. For these reasons, in the authors view, 

further investigation of conceptual representations in 

generative learning and their role in intelligent functions and 

behaviors in both artificial and biological systems merits 

attention of the research community. 

APPENDIX: SIMILARITY-BASED CONCEPT IDENTIFICATION 

This method can be seen as a type of a novelty detection 

approach, with the extension of harnessing unsupervised 

latent structure that is produced in unsupervised generative 

learning. The method is bases on producing latent nearest 

neighbor classifier (or another geometry-based classifier) with 

a small set of samples of interest identified by a relationship 

of similarity. 

In the first iteration, there is a single set of samples S1 

defined by some similarity relationship that can be acquired in 

empirical trials, for example, “a food source”. A binary 

classifier for the concept associated with the samples can be 

obtained with 1) the encoded set P1 = E(S1) representing in-

class training samples; and 2) a subset of the encoded general 

sample g, E(g) at the maximum distance from the center of P1, 

negative out-of-class samples. An observable prototype of the 

concept can be obtained as an image generated from the 

position of the latent prototype produced with P1, for example, 

mean(P1). 

The process is then repeated iteratively for the next concept, 

with positive samples of known concepts used as negative 

ones for the new concept. Despite simplicity of the method, 

structured latent representations with strong correlation of 

latent regions to principal native concepts allowed to obtain 

reasonable accuracy in identification of principal concepts 

with very small similarity sets, as illustrated in Table 1A. 

 

Samples per concept 2 3 5 

Sensitivity / false 

positives* 

0.89 / 

0.09 

0.96 / 

0.04 

0.99 / 

0.01 
*An average of 3 independently trained models 

Table 1A. Similarity-based classification, 3 concepts. 

 

In a real environment, the accuracy of the classifier can be 

improved iteratively by adding concept observations verified 

in an empirical test to the training set for the concept 

classifiers, with the potential to further improve the accuracy 

in identification of principal native concepts.  
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