
Abstract: Automated event and activity recognition in uncon-
strained videos has become a societal necessity. In this paper,
we address video event classification and analyze the influence
of preprocessing through action localization on the classification
task. We propose an approach for event classification in videos,
that is aided by unsupervised preprocessing through tempo-
ral attention and subsequent spatial action-localization at those
specific attentive instants of time. The unsupervised temporal
attention is achieved through a graph-based algorithm for selec-
tion of representative (key) frames. Our spatial action localiza-
tion technique SALiEnSeA identifies the most-‘dynamic’ motion
patch in each key-frame. It is based on an oil-painting approach
of refining and stacking motion components. These focused
actions along with spatial and temporal information are fed
into three separate deep neural-network pipelines consisting of
ResNet50 and LSTM. A multi-tier hierarchical fusion thereby,
consolidates frame-level and video-level predictions. The exper-
iment is performed on four benchmark datasets: CCV, KCV,
UCF-101 and HMDB-51. The holistically developed solution
framework for action localization-aided event classification pro-
vides encouraging results. By introducing a separate modality
for action-localized SALiEnSeA patches, we get improved video
classification performance on top of the traditional modality of
RGB frames. This outperforms standard neural-network based
approaches as well as state-of-the-art multimodal models in use,
for video classification.

Keywords: Video Classification, Event and Activity Recognition,
Unsupervised Action Localization, Motion and Video Analysis,
Deep Neural Network

I. Introduction

The past two decades saw the rise of social media, and the
number of active users currently accounts for almost 50% of
the world population. Moreover, the number of social media
users is increasing by about 9% each year. Consequently,

(a) Event “Boat” in KCV [1] (b) Optical-Flow after HSV
transform (Ref. Section III-B)

(c) Event “Still Rings” in UCF-
101 [2]

(d) Optical-Flow after HSV
transform (Ref. Section III-B)

Figure. 1: Understanding (a)-(b) the pros and (c)-(d) some
of the common challenges (cons) involved in relying upon
the motion-heavy regions in optical-flow matrix

many videos are being uploaded to these content sharing
social-media platforms. Be it for regulating inappropriate
content, or annotating content for a personalized search ex-
perience, an automatic visual event recognition system is al-
ways called for in today’s era of Internet dominance and au-
tomated surveillance. Since the advent of computer vision,
active research in visual scene understanding has helped the
subject reach its present form. In recent times, its different
applications are being used in almost all the sectors of ev-
eryday life – from the basic necessities to the technological
advancements.
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Figure. 2: Illustration of the major steps involved in the proposed method.

Events/Activities. Typically, an event includes person(s)
and/or object(s) and refers to their mutual behavior. Events
cover small-scale as well as large-scale activities. Small-
scale activities [3][4] include movement of minor body parts,
as for example movement of fingers (playing piano, typ-
ing, knitting) and facial gestures (smiling, crying). Large-
scale activities [5][6], on the other hand, may involve full-
body movement (gymnastics, jumping), locomotion (walk-
ing), etc. This paper aims to identify large-scale and non-
intricate small-scale activities, and thereby understand the
high-level ongoing event in videos.

Spatio-Temporal Attention. In the recent past, re-
searchers have come up with promising activity-recognition
results by feeding deep networks with bulks of data, as
for instance, 3D-ConvNet [7] using untrimmed video and
combination of spatio-temporal modalities using whole key-
frames [8]. But this gives rise to a concern, whether surplus
information actually assist the network or, end up putting it
in dilemma with contradicting data. Real-life unconstrained
videos typically exhibit high intra-class variance. This is ex-
emplified in Figure 1(a) where acknowledging the fact that
“boat”s are commonly surrounded by water in most videos,
this video of paper-boat is an exception in itself. To exploit a
deep architecture to the best of efforts, such kind of variation
must be minimized so that videos of the same class appear
least disparate [9]. Only then, a deep neural net would be
unaffected by varied backgrounds. Thus, a close-up atten-
tion image would be beneficial, as denoted by yellow arrow
in Figure 1(b). Hence, event recognition cannot be regarded
as a mere classification task. This issue is addressed in the
proposed work by performing both temporal (time-wise) and
spatial (space-wise) action localization. The former pin-
points most action-stuffed key-frames and the latter identifies
and feeds those frames’ dominant subject to the deep neural
architecture.

Challenges. High-end cameras like an event camera [10]
or intelligent thermal camera [11], possess superior vision
sensors that can asynchronously assess intensity changes.
For such a fixed camera, attention-detection is a relatively
straightforward task because all the background pixels are
static and the moving pixels corresponds to the subject of
the video. However, in unconstrained videos captured by
amateurs on regular cameras, majority of the pixels are in
motion and it leads to number of false-positives. Thus, sim-
ple extraction of the most motion-heavy patches would not
only lead to less accurate results, but the frame’s subject
may also be excluded. This is exemplified in Figure 1(c),
where the frame exhibits slanting-line patterns throughout
the background along with presence of top-bottom margins.
The area where lines meet the margin (high intensity sky-
blue patch in Figure 1(d)) gives a false portrayal of motion
(Ref. Scissor-effect in Section III-B). Here, the subject is rel-
atively static (denoted by yellow arrow in Figure 1(d)) amidst
the jittery background. Evidently, motion-heavy patches do
not always correspond to the frame’s subject. Motivated by
the fact, in this paper we have proposed an action localiza-
tion scheme that identifies the attention patches in frames of
unconstrained video. The efficacy of the proposed scheme is
demonstrated through examples in Figure 6.

Contributions. In this paper, we put forward an efficient
video event recognition approach that is based on action
localization. The proposed action localization preprocess-
ing focuses on the most semantically salient space-time por-
tions of videos to classify an event. We introduce an unsu-
pervised, light-weight spatial action localization technique,
that pin-points the subject in a video key-frame, full of non-
contextual background information. The frame-subject is
represented by the salient and most-‘dynamic’ motion patch
identified in each key-frame. Thus, the focus is on feeding
ConvNets with more salient, pin-pointed action information.
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Later in Section IV, we show that this extension enables any
existing set of modalities on an existing deep neural archi-
tecture, to provide better predictions to a wide range of un-
constrained videos. Effectively, we embark on the holistic
classification process without essentially occurring for all the
constituent video frames and all the spatial locations in the
selected key-frames. The action localization scheme makes
the result robust to both wide-shot and close-shot videos be-
cause in both cases the frame’s subject is cropped out. Also
since this is unsupervised, there is no necessity of large la-
beled datasets and long training phases. This has increased
the practical applicability of our method on real-life video
clips. Further, the proposed late decision-fusion technique
leads us to a judicious consensus of the frame- and video-
level predictions with due degree of importance on the indi-
vidual classification pipelines, corresponding to each modal-
ity. The steps involved in the proposed method is shown in
Figure 2.
The paper is organized into five sections. Following the in-
troduction, some of the relevant past works are presented in
Section II. Next, in Section III we elaborate our proposed
methodology. The experimental results are discussed in Sec-
tion IV. Finally, Section V draws the epilogue alongside pro-
viding some scopes of further improvements.

II. Related Work

The traditional event recognition methods are mainly based
on extracting the visual cues from a sparse or dense labeling
of frames [12]. With progress of time, researchers started
fusing multimodal information, viz. spatial, temporal and
acoustic data, for video classification. Such approaches in-
clude the conventional way of deploying separate convolu-
tional networks to extract features from each modality and
thereafter, using end-to-end fusion networks or aggregation
of probability distributions, like that of Li et al. [13]. More-
over, some researchers like Jiang et al. [14] preferred to bring
in more information about feature and inter-class relation-
ships to find out similarities among the semantic categories.
Although these induced a huge leap in classification perfor-
mance, but still there was a major room for improvement.
It was observed that deep networks performed much bet-
ter when they were given an information about the precise
spatio-temporal location of an ongoing action. By virtue
of temporal action-localization, the ‘essential’ temporal seg-
ments are fed to a classifier network which correspondingly
categorizes each such clip [15]. Pei et al. [16] introduced
a recurrent attention-gated network to interpret the physical
saliency of each time-step from video sequences. Aote et
al. [17] used a key-frame extraction approach based on fuzzy
c-means clustering, and utilized saliency map and color his-
togram of these key-frames to annotate videos. Some re-
searchers prefer preserving all the temporal data and rather
than temporal attention, perform spatial action-localization.
Karpathy et al. [18] was instrumental in introducing multi-
resolution CNN that fed on foveated center-crop attention
images, and this was unique in its own way for video classi-
fication task. But unsurprisingly, this fails in unconstrained
videos where the object of interest remains missed out, as
they rarely occupy the central patch of frames (e.g. Fig-

ure 6(a), 6(k)). Here, object detection can assist the classifi-
cation process [19]. For fine-grained discrimination between
spatio-temporally similar events like birthday party and an-
niversary ceremony, researchers sometimes prefer to perform
frame-wise object detection in videos [20]. As for exam-
ple, Burić et al. [21] perform object detection per frame by
Mask Region-based CNN (R-CNN) for improved recogni-
tion of activities in sports videos. Gkioxari et al. [22] had put
forward a modification of the R-CNN that considers mul-
tiple region proposals to identify a primary person-focused
region and a secondary context region. However, being too
much human-centric, it does not offer best results in videos
involving inanimate objects, animals or minor human-body
parts (e.g. Figure 1(a), 6(d), 6(f)). In fact, as pointed out by
Pacheco et al. [23], these pre-trained object detector-based
approaches can even fail in specific tasks e.g. action clas-
sification in videos of infants, because they were trained pri-
marily on datasets comprising adult and commonly occurring
objects.
Integrating spatial and temporal action-localization gives an
even more accurate space-time blob, and this rules out all re-
dundant/irrelevant data. Li et al. [24] uses a RNN-based spa-
tial attention framework that takes three information into ac-
count, viz. the visual content, the accumulated attention from
temporally-correlated past frames and the current state of an
ongoing action. Peng et al. [25] use two independent spatial
(static) and temporal (motion) attention networks to respec-
tively extract discerning static and motion features. These
are learned collaboratively by a static-motion model that ex-
ploits the interdependence between them and thereby, clas-
sifies a video. Li et al. [26] came up with Spatio-Temporal
Attention Networks that exploit attention, both at the spa-
tial and temporal level. Effectively, the spatial attention on
frame/optical-flow (modality) are learnt by an AttCell and
fed through a CNN, before being concatenated and utilized in
LSTM that structures the inter-modality temporal attention.
Liu et al. [6] propose a two-stream ConvNet, a temporal at-
tention module (TAM) to identify key-frames, and a spatial
attention module (SAM) to extract the action-relevant areas
within a frame. Although their results mostly tally with com-
mon human perception, the SAM results are prone to noises
and in slow-changing videos, TAM is occasionally suscepti-
ble to choosing near-similar key-frames.
Fusion of multimodal information is adopted nowadays to
improve image and video classification performance. Ad-
hikari et al. [27] have performed a study of bird classification
from images and vocal notes using audio-visual features and
multimodal deep CNNs. To integrate features extracted from
multiple streams in videos, early fusion [28], kernel-level fu-
sion [13] and late decision fusion [18, 29] are the three major
types of fusion performed. Researchers like Ng et al. [30]
had preferred to use a combination of fusion techniques to
exploit their individual merits simultaneously. For the fusion
part, we have improved the conflation strategy put forward
in one of our earlier works [8]. Spatio-temporal action local-
ization already reduces extra unnecessary information from
our CNN inputs. The effectiveness of this late decision fu-
sion strategy is studied in Section IV, where fusion is per-
formed on predictions from CNN and LSTM on each indi-
vidual modality, and different combinations of these.
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III. Proposed Approach

The goal of our proposed approach is efficiently to recognize
the ‘event’ pertaining to a video, using action-focused input
information to a deep neural architecture.

A. Key-Frame Representation of Video

This stage serves the purpose of temporal localization of ac-
tions. In this step, a video of N frames is symbolized by a
pre-fixed number n, of representative key-frames {fk}, such
that n << N . Taking cues from the method of Jana et
al. [31], two major steps are followed in this regard.
The first step involves elimination of those frames which ex-
hibit temporally redundant information. For this, inter-frame
motion between consecutive frames is estimated by dense
optical-flow algorithms like Lucas-Kanade tracker [32] or
Farneback’s dense optical flow estimator [33]. Modern
optical-flow techniques [34][35] following a supervised ap-
proach by incorporating fast semantic segmentation [36] can
also be used, but it may bring in extra computational needs.
Next, ‘motion’ is quantified by generating a motion his-
togram of magnitude and slope of the corresponding flow
vectors. Higher `1-norm amongst such histograms of consec-
utive frames indicates a higher distinctness and lower chance
of information redundancy on the time axis. Subsequently,
only a handful of frames are preserved that satisfy a pre-
calculated minimum criteria. Typically, this minimum cri-
teria can be considered as the 75th percentile mark in a box-
plot representation. This was taken in accordance with the
definition of inter-quartile range [37], a popular measure of
spread, whose upper-boundary is defined by this mark in
box-plot. As an effect of this step, the search space for
key-frames is reduced drastically and temporal redundancy
is mostly eliminated.
The second step involves choosing a set of most tempo-
rally distinct frames, alongside maintaining a lower limit of
difference in timestamps. For this, frames are denoted by
nodes of a complete graph whose edge-weights signify `1-
norm amongst motion histograms corresponding to its ter-
minal node. Also, a minimum acceptable timestamp differ-
ence (tmin) is maintained amongst the selected key-frames.
The value of tmin can be represented as

⌊
N

r×n−1

⌋
. It is the

strictest when relaxation factor r is unity and sampled frames
are separated no closer than an n-sampling of equally-spaced
key-frames from the video of N frames. For our case, we fix
r at 2. Thereafter, an iterative edge-selection algorithm is
followed. In each iteration of this algorithm, ‘viable’ edges
are defined as those which satisfy the minimum timestamp
difference among both the terminal nodes and among each of
the terminal and all the selected nodes. The highest-weighted
edge is selected from these viable edges, resulting in a pair of
terminal nodes (key-frames) in each iteration. This iterative
process continues until there remains no ‘viable’ edges or the
predefined number (n) of key-frames are selected, whichever
occurs first.
Since this key-frame extraction algorithm exploits the inter-
frame temporal variation and maximizes their distinctness,
we are sure of starting off with the most action-packed tem-
poral moments in a video.

B. SALiEnSeA: Spatial Action Localization in Engendering
Semantic Attention

Many social media videos contain black margins around
them. It may be observed that, such margins are mostly line-
symmetric across the horizontal and vertical central axes.
We start off our spatial action localization algorithm by dis-
carding these symmetric near-black margins from each key-
frame fk (as in Figure 3(a)) that do not manifest any signs of
motion. The challenging part is that, due to successive up-
loads and downloads or occasional jittery noises, these black
borders are not pitch-black and thus, their RGB values de-
viate from (0, 0, 0). This was tackled by converting fk to
grayscale and binarizing using fuzzy c-means based cluster-
ing [38]. After this pixel-wise thresholding, same-height hor-
izontal chunks and same-width vertical chunks containing
black pixels only, were removed from the top-bottom mar-
gins and the left-right margins, respectively. This step, not
only reduces our subsequent search space, but also helps to
identify pseudo-motion patches, like the high-intensity blue
patch in Figure 1(d). This will be elaborated in the subse-
quent paragraphs while discussing Scissor-effect.

(a) Frame obtained after cropping

(b) OF (c) OFq with 4 clusters

Figure. 3: (Best viewed in color) (a) Cropping near-black
borders from frame, fk depicted within red corners (b) Cor-
responding optical flow represented as HSV image (c) Color-
quantized optical flow image

Next, for each such frame fk and its immediate next frame,
the dense optical-flow [33] is calculated. As a result, a sense
of motion is associated with each pixel (x, y) by a flow-
vector −−−→v(x,y) representation. In order to put this informa-
tion more pictorially, we transform −−−→v(x,y) to polar coordi-
nates and represent the dense-optical flow as an HSV image
(OF ). The Hue (H) channel stores the direction of −−−→v(x,y),
and the Saturation (S) channel stores its magnitude. This is
illustrated in Figure 3(b), where the high-intensity patches
denote high motion and the similar colors signify motion in
the same direction. This HSV image is quantized by ap-
plying k-means clustering, where each data point is repre-
sented by three attributes, corresponding to each of the three
color channels. OFq is the resulting quantized image thus
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Figure. 4: Phases in the oil-painting approach of converting OFq to OFqCorr

obtained, after color space clustering. This is illustrated in
Figure 3(c), where pixels belonging to the same cluster im-
ply that they move in the same direction with similar pace.

Oil-Painting Approach towards Refining OFq. For each
cluster-label lbl in OFq , a separate binary image (Ilbl) is
formed such that,

Ilbl (x, y) =

{
lbl, OFq(x, y) = lbl

0, elsewise
(1)

A sequence of morphological operations is performed on
Ilbl. For these operations, we define pixel neighborhood by a
W ×W square structuring element (S). Morphological ero-
sion [39] of a binary image B, removes minor details, that
are smaller than S, and shrinks its larger components from
their outer boundaries. It is defined as Beroded = B 	 S
such that,

Beroded (x, y) = (B 	 S) (x, y)

=

{
lbl, ∀i,j∈[−bW

2 c,bW
2 c]B(x+ i, y + j)× S(i, j) = lbl

0 elsewise,
(2)

On the contrary, morphological dilation [39] of a binary im-
age B, fills up gaps and holes, that are smaller than S. As
such, this operation in turn expands each of the connected
components from their outer boundaries. The equation con-
cerning morphological dilation of a binary image B, can be
formulated as Bdilated = B ⊕ S such that,

Bdilated (x, y) = (B ⊕ S) (x, y)

=

{
lbl, ∃i,j∈[−bW

2 c,bW
2 c]B(x+ i, y + j)× S(i, j) = lbl

0, elsewise
(3)

Firstly, we perform morphological closing (i.e. dilation fol-
lowed by erosion) of Ilbl to fill up small holes in the image.
Subsequently we perform morphological opening (i.e. ero-
sion followed by dilation) to eliminate small components and
narrow connections from the opened image. Since frame-
subject covers substantial spatial area, a noise-removal step
is essential here, whereby we eliminate all small-sized outlier
components.
Finally, we assign a dynamicity value to each of the cluster-
labels, that we had obtained previously. It is evident that
the cluster-label for which corresponding pixels has the high-
est average saturation value (in OF ), accounts for the most-
dynamic set of pixels in a frame. By the term ‘most-
dynamic’, we imply that they have the highest amount of mo-
tion associated with them. We go on stacking all the modified
Ilbl-s, starting off with the least-dynamic label at the bottom
and ending with the most-dynamic one on the top. This res-
onates with the philosophy of oil-painting, where the canvas
is started off with a coat of underpainting, and finished with
a coat of overpainting. Here also, the least-dynamic label
serves the purpose of underpainting, or the stationary back-
ground. And the final ‘coat’ i.e. the most-dynamic label,
functions as the overpainting corresponding to the detailing
and frame’s subject.
As a post-processing step, pixels with still no label-
assignments are assigned value of the least-dynamic label.
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The corrected and color-quantized optical flow image, thus
obtained, is OFqCorr. The entire process is pictorially ex-
plained in Figure 4. After this step, all individual connected-
components {CCid} are large enough to independently rep-
resent a major area in the image.

Identification of Meaningful Component(s) from
OFqCorr. With all connected components large enough,
we label each pixel in OFqCorr by a pair, (lbl, CCid).
Thereby, each pixel belongs to one of these Labeled-
Connected-Components (LCCs), thus obtained. For every
LCC, the corresponding average saturation value (from
OF ) is calculated, that measures the amount of motion
(dynamicity) associated with them.
It is understandable that a frame’s subject would have some
motion associated with it, that is visually disparate from the
motional behavior of its surroundings. But a simple identi-
fication of the most dynamic LCCs would most certainly be
erroneous towards subject localization. Misleading LCCs al-
most always touch the frame’s exterior perimeters. The suc-
ceeding points substantiate the reason behind this special lo-
cation at which this discrepancy occurs:

• Optical Flow algorithms assumes Spatial Coherence,
i.e. pixels in a neighborhood should exhibit similar mo-
tion. But this is contradicted at the frame’s near-black
margin strips, where two set of pixels, with contrasting
motional behaviors, meet.

• When a scissor is being closed and the angle between
its blades is minimal, then the notch of intersection ac-
quires a high velocity [40]. A similar Scissor-effect is
noticed at the intersection of edges and the frame’s mar-
gin strips, especially when the edges are almost parallel

to the latter. This creates an illusion that pixels near the
frame boundaries are moving at a fast pace, as in Fig-
ure 1(c)-1(d).

We propose to exclude all the border LCCs, i.e. LCCs that
touch any of the frame boundaries. This is beneficial because
border LCCs cannot be relied upon as they exhibit pseudo-
motions, and is benign because in a key-frame, the subject
has the least possibility to not occupy a central location.
Subsequently, we start with the most-dynamic non-
border component (LCC1), and consider the bounding-box
(BBox1) around it. If BBox1 satisfies our preset crite-
ria of covering a minimum substantial area (areamin) of
the image, then LCC1 becomes our sole chosen compo-
nent [CASE: 1-LCC]. But if LCC1 is not big enough,
we make a decision as to whether to include the second-
most dynamic non-border component (LCC2), or not. For
this, we expand BBox1 uniformly from all the sides, so
that it occupies the minimum area. Considering BBox1

to be of dimension h × w, the length (d) that is to be in-
cremented on all sides of BBox1, is obtained by solving
(h+ 2d)× (w + 2d) ≥ areamin. The minimum value of d,
thus obtained, is

d =
−(h+ w) +

√
(h− w)

2
+ 4× areamin

4
(4)

Next, we compare the bounding-box around LCC2 (i.e.
BBox2) and the expanded BBox1. When both these boxes
overlap, there is a high possibility that LCC1 and LCC2 to-
gether may represent something more semantically meaning-
ful. They are close-by, and may have been separated due to
the jittery video quality and faults in optical-flow algorithms.
Thus, we choose both LCC1 and LCC2 [CASE: 2-LCC].

Figure. 5: Process of pin-pointing area-of-interest in fk, using OFqCorr.
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But if they do not overlap, it signifies both these compo-
nents are uncorrelated. In that case, we choose only LCC1

[CASE: 1-LCC]. The sequence of steps are elucidated in
Figure 5. As a final step, the bounding-box is made to as-
sume shape of a square by incrementing the height or width,
whichever is lower. If the area covered is short of areamin,
the box is incremented from all sides till the minimum area is
achieved. We crop the square patch corresponding to this box
from the original RGB image, to obtain our attention patch.

(a) Apply Makeup (b) Baseball Pitch

(c) Blowing Candles (d) Cutting in Kitchen

(e) Haircut (f) Knitting

(g) Playing Cello (h) Playing Guitar

(i) Still Rings (j) Swing

(k) Typing (l) Walking with Dog

Figure. 6: (a-l) Spatial localization of square-shaped atten-
tion patches (red boxes).

It is observable that even if the subject is not at the center
of a frame (e.g. Figure 6(a), 6(g), 6(h), 6(k)), the proposed
method is able to efficiently localize actions in the frame.
Even spatially separated objects that are close-by, but are se-
mantically related w.r.t motion are identified jointly in the
same attention patch (e.g. Figure 6(d), 6(e), 6(j), 6(l)).

C. Overall Deep Architecture and Fusion of Classification
Results

In this section, we propose a deep architecture and a late de-
cision fusion strategy to efficiently process the multimodal

information obtained from the video.

Deep Neural Architecture. Our deep learning framework
for classification of unconstrained videos into various social
events, human activities, etc. consists of ResNet50 [41] (a
CNN) followed by LSTM [42]. Three different kinds of in-
formation, viz. Spatial, Temporal and Attention, are sepa-
rately exploited through this deep learning framework. This
overall hybrid framework is depicted in Figure 7. The spatial
wing inputs RGB images corresponding to the key-frames,
generated as a result of temporal action localization. The
temporal wing, in turn, inputs matrices formed from magni-
tude of dense optical flows, corresponding to the key-frames
and its immediate next frame. The attention wing inputs
square-shaped patches corresponding to action-packed re-
gions in key-frames i.e. the outcomes of spatial action lo-
calization by SALiEnSeA on key-frames.

Multimodality Fusion. The countable set of all possible
events (e.g. diving, kick-ball, draw-sword, etc.) constitutes
the collection of all outcomes (S). The CNN decisions from
each key-frame can be regarded as frame-wise predictions
(FP). LSTM accumulates features for each frame and gives
a video-wise prediction (VP). This paper focuses on a late
decision fusion approach [8] that takes into account all such
FPs pertaining to each key-frame and VP corresponding to
the whole video, from each of the modalities involved.
Let’s suppose that M is the set of modalities and F is the
set of key-frames. We want to consolidate the collection of
different probability mass functions (PMF),

{Pm,f}∀m∈M,∀f∈F ∪ {Pm,F }∀m∈M (5)

all defined on the same set of possible outcomes, S. Here,
Pm,f represents a FP proffered by m-stream of CNN for
frame f and Pm,F represents a VP proffered by m-stream
of LSTM. Two PMFs are said to belong to the same homo-
geneous sub-group when all of the following conditions are
satisfied.

• Either both are FP or both are VP

• If both are FP, they should either correspond to the same
frame (different modalities) or to the same modality
(different frames of same video)

• If both are VP, both should correspond to the same video
but different modalities

ConsideringP to be such a homogeneous sub-group of prob-
ability distributions, the outcome depends on the joint prob-
ability of all P ∈ P. This behavior is accurately captured
when we consider the conflation [43] of all P ∈P, which is
proportional to the product of the corresponding probability
values and is obtained by,

a∈SP (X = a) =

∏
P∈P

P (X = a)

∑
c∈S

( ∏
P∈P

P (X = c)

) (6)
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Figure. 7: The deep architecture and decision-fusion strategy used to integrate frame- and video-level predictions. A, S and
T respectively denote Attention, Spatial and Temporal

We further define two different kinds of fusion operations:
cross-fusion and self-fusion. The first operation, Cross-
Fusion is denoted by the function∏′

f or F

: {Pm, f or F }∀m∈M → PM, f or F

and is defined as the biased-conflation [8] of FPs (or VPs),
corresponding to the same frame f (or same video F ) but
belonging to different modalities. The output is a PMF cor-
responding to the same key-frame (or video) representing a
consolidation of all the modalities. Self-Fusion is denoted by
the function∑′

m or M

: {Pm or M,f}∀f∈F → Pm or M,F

and defined as the biased-conflation [8] of the FPs, corre-
sponding to all the key-frames in a video, each representing
a consolidation of same modality m or set of modalities M .
The outcome is a VP representing a consolidated PMF of all
the key-frames in a video.
Finally, there should be a hierarchical order in which these
fusions should be performed so as to bring about a mean-
ingful consolidation at each step. The operations involved in
the CNN and LSTM pipelines and their consolidation, can
be expressed as:

CNN fusion pipeline :

FPf,CNN =
∏′

f

(
{Pm,f}∀m∈M

)

V PCNN =
∑′

M

( ⋃
∀f∈F

FPf,CNN

)
LSTM fusion pipeline :

V PLSTM =
∏′

F

(
{Pm,F }∀m∈M

)
(7)

CNN and LSTM consolidation :

V PCNN+LSTM =
∏′

F

(
V PCNN

⋃
V PLSTM

)
(8)

Cross-fusions are applied to bring about consolidation at the
same hierarchical level (i.e. consolidation of FPs to get a
FP or consolidation of VPs to get a VP). On the other hand,
self-fusion is applied to move up the hierarchy ladder (i.e.
consolidation of FPs to get a VP). As can be observed from
Figure 7 there are two parallel fusion pipelines corresponding
to CNN and LSTM respectively, that ultimately converge at
the last level. For the CNN pipeline, firstly cross-fusion is
applied for each of the key-frames followed by a self-fusion
operation. Since predictions are already of video-level, the
LSTM pipeline do not necessitate self-fusion as such, and
thus, only cross-fusion is applied. Finally, the individual VPs
from CNN and LSTM streams are consolidated through a
cross-fusion operation.

IV. Experimental Results and Discussion

A. Implementation Aspects

All our codes were executed on an Intel Core i7-7700K pro-
cessor, with a clock-speed of 4.20×8 GHz and Ubuntu 16.04
operating system. Key-frame extraction from videos was im-
plemented in MATLAB R2018b. All of the subsequent parts
in the pipeline were carried out using Python 3.6.9 and its
respective libraries for scientific computation and computer
vision tasks. For the purpose of training, fine-tuning and
testing of our proposed multi-pipeline deep architecture, we
have relied upon the Keras [44] deep learning library, with
Tensorflow [45] as a backend engine.
Input images in the spatial (S) and temporal (T) pipelines
were resized to the dimension of 224×224. On the contrary,
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images of the attention (A) pipeline contained much concen-
trated (focused) information and was thus resized to half the
previous size, 112 × 112. Regarding our deep neural archi-
tecture, instead of training it from scratch, transfer learning
was relied upon. We started off with an existing CNN model
(for each pipeline) that was pre-trained on the ∼15M im-
ages of the ImageNet [46] dataset, spanning 1000 categories.
With such an initiation of the learnable parameters, the learn-
ing process received a huge boost in terms of a reduction in
training time and quantity of training data. The topmost layer
(of 1000 nodes) in each of the pipelines is replaced by a layer
whose size is specific to each dataset. This layer generates a
class-wise probability distribution, that is utilized later in our
decision-fusion strategy. The LSTM model was trained from
the last/penultimate fully-connected layer of CNN.

B. Datasets and Metric used

The proposed method was tried and tested on four bench-
marking datasets.

Columbia Consumer Videos (CCV) [47]. This dataset is
consisted of 9,317 unedited consumer videos from YouTube
(due to broken URLs, only 5,046 were downloadable),
that can be sub-classified into 20 event categories. Here,
some of the events like “wedding-ceremony” and “wedding-
dance” share very similar semantic properties, even indis-
tinguishable to the human annotator. This makes the event-
recognition task from this collection highly challenging.
Kodak Consumer Videos (KCV) [1]. Spreading 29 event-
concepts, this dataset includes 3,321 consumer videos. Al-
though less intra-class variance, these videos suffer from se-
rious quality issues in comparison to the other three datasets.
This makes this dataset “unconstrained” to the truest sense.

UCF-101 [2]. In total there are 13,320 short clips from
YouTube distributed across 101 action classes. Our choice
behind choosing this dataset was backed by the richest [2]
action-diversity this dataset possess, ranging from small-
scale facial movements to large-scale locomotory activi-
ties. The training set of the more recent THUMOS-14 and
THUMOS-15 [48] datasets uses the same videos as in UCF-
101. But since the untrimmed videos of their test and val-
idation set include multiple activities and we do not try to
evaluate multi-class classification performance here, we in-
stead use the train-test split provided by UCF-101.
Human Motion Database (HMDB-51) [49]. This has 7,000
freely-available movie clips spread over 51 human-action
classes, with huge-variance with respect to duration.

Although we carried out an unsupervised spatio-temporal ac-
tion localization on the videos, we do not intend to evaluate
its localization performance explicitly. Instead, we analyze
whether inclusion of this preprocessing step actually helps
our main motive of video classification or not. For the video
classification part, we evaluate accuracy by the percentage of
correctly classified video instances in the test-set.

C. Assessment of SALiEnSeA and Proposed Multimodality
Fusion

Evaluation of the Proposed Fusion Strategy. We com-
pare our decision-fusion strategy with other conventional late
fusion strategies in use, e.g. Average of prediction [43],
Borda count [50] and Highest-rank fusion [51].
In Table 1 and Table 2, we present a detailed comparison
of these aforementioned conventional fusion strategies to the
proposed biased-conflation based fusion method. To com-
pare different fusion strategies on the same yardstick, they

Symbols used: 7 = Wrong,
⊗

= Wrong and equal to another, X = Correct
In this table, a pipeline is said to predict correctly when its highest-probable predicted class is same as the video event.
Highest value in each row per dataset is/are highlighted in bold font.

Possible combination
for 3 modalities

TmSpAttn
Total % present in dataset, and % of dataset corrected

KCV [1]CCV [47]

% of dataset corrected by% Present% of dataset corrected by% Present

Ours1st-RankBordaAvgOurs1st-RankBordaAvg in datasetin dataset

All 3 same
All wrong,

but same

⊗ ⊗ ⊗
6.69 0.000.000.000.00 2.24 0.000.000.000.00

All correct X X X 30.96 30.9630.9630.9630.96 17.21 17.2117.2117.2117.21

2 same, 1 different

All wrong

(2 same,

1 different)

⊗ ⊗
7 0.040.320.085.00 0.40 0.000.190.077.35 1.01⊗

7
⊗

0.010.090.062.62 0.16 0.003.14 0.15 0.000.00

7
⊗ ⊗

0.030.000.033.73 0.12 3.21 0.000.000.000.00
2 same

wrong,

1 correct

X
⊗ ⊗

0.080.000.131.71 0.45 0.000.000.000.67 0.06⊗
X

⊗
1.441.381.552.93 2.02 0.750.631.98 0.90 0.84⊗ ⊗

X 0.660.312.33 1.07 0.370.300.860.27 0.52 0.49

2 correct,

1 wrong

X X 7 6.9110.7113.5013.89 13.89 7.507.5812.2413.92 13.92
X 7 X 1.131.631.692.38 2.02 0.450.860.901.01 0.98
7 X X 8.558.73 8.73 8.67 8.73 6.31 6.316.316.316.31

All 3 different

All different

wrong
7 7 7 0.130.470.306.90 1.38 0.190.900.4122.58 2.39

2 different

wrong,

1 correct

7 7 X 1.042.52 1.18 1.10 1.18 1.271.611.642.76 1.91
7 X 7 3.474.065.247.07 5.96 5.715.416.6812.73 7.22
X 7 7 0.240.540.702.55 1.38 0.370.710.824.03 1.27

TOTAL (frame-level fusion for all 3 modalities) 55.2860.7364.14100 68.92 41.1041.3447.70100 53.61

Table 1: Comparison of fusion results in terms of accuracy, for consolidation of frame-level predictions on the CCV [47] and
KCV [1] datasets
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Symbols used: 7 = Wrong,
⊗

= Wrong and equal to another, X = Correct
In this table, a pipeline is said to predict correctly when its highest-probable predicted class is same as the video event.
Highest value in each row per dataset is/are highlighted in bold font.

Possible combination
for 3 modalities

TmSpAttn
Total % present in dataset, and % of dataset corrected

HMDB-51 [49]UCF-101 [2]

% of dataset corrected by% Present% of dataset corrected by% Present

Ours1st-RankBordaAvgOurs1st-RankBordaAvg in datasetin dataset

All 3 same
All wrong,

but same

⊗ ⊗ ⊗
1.00 0.000.000.000.00 6.25 0.000.000.000.00

All correct X X X 36.91 36.9136.9136.9136.91 13.64 13.6413.6413.6413.64

2 same, 1 different

All wrong

(2 same,

1 different)

⊗ ⊗
7 0.010.260.072.98 0.73 0.035.42 0.12 0.050.01⊗

7
⊗

0.000.81 0.03 0.000.080.013.110.000.00 0.22

7
⊗ ⊗

0.000.000.011.58 0.05 0.030.000.059.51 0.13
2 same

wrong,

1 correct

X
⊗ ⊗

0.020.000.040.68 0.22 0.080.000.162.18 0.80⊗
X

⊗
0.470.481.20 0.61 0.440.421.240.54 0.57 0.44⊗ ⊗

X 0.560.620.431.04 0.83 0.710.560.311.48 0.85

2 correct,

1 wrong

X X 7 8.4010.9615.9016.42 5.7716.15 5.772.873.955.37

X 7 X 0.831.561.671.73 1.73 1.462.002.302.88 2.88
7 X X 10.1410.18 10.18 10.16 10.18 10.3710.54 10.54 10.47 10.54

All 3 different

All different

wrong
7 7 7 0.180.940.599.05 1.24 0.250.850.6821.42 1.29

2 different

wrong,

1 correct

7 7 X 2.51 1.79 2.562.652.495.351.631.241.69 3.11
7 X 7 5.425.888.0711.10 9.10 3.724.125.417.85 5.92
X 7 7 0.460.831.362.83 1.69 0.310.560.903.37 1.29

TOTAL (frame-level fusion for all 3 modalities) 64.7970.3377.46100 81.00 36.6839.5142.14100 46.93

Table 2: Comparison of fusion results in terms of accuracy, for consolidation of frame-level predictions on the UCF-101 [2]
and HMDB-51 [49] datasets

are subdivided into fifteen sub-categories based on the cor-
rectness of individual pipelines. We evaluate the perfor-
mances in order of increasing difficulty levels (DL-1 to
DL-7) of getting correct result after fusion. The easiest and
trivial case (DL-1) to fuse is XXX i.e. when all the modali-
ties vote for the correct event category. The next set of more
difficult case (DL-2) is XX7, X7X, 7XX i.e. when any two
modalities are correct and the third is wrong. Next comes the
scenario (DL-3) of 77X, 7X7, X77 when only one modal-
ity gives correct result and other two modalities are wrong,
but each voting for different event categories. Subsequent
to these, we have an even more difficult case (DL-4) viz.
X
⊗⊗

,
⊗

X
⊗

,
⊗⊗

X i.e. when only one modality is cor-
rect and other two are wrong, but the wrong modalities vote
for the same event category. Another case (DL-5) is 777
when all the modalities are wrong, but they individually vote
for different event categories. Next comes the case (DL-6)
of
⊗⊗

7,
⊗

7
⊗

, 7
⊗⊗

i.e. when all the modalities are
wrong, but two vote for the same event category. The most
difficult case (DL-7) arises in

⊗⊗⊗
when all three modal-

ities are wrong but, they vote for the same event.
All the fusion techniques perform equally well in DL-1 and
after fusion, predicts 100% of all such cases correctly. The
efficacy of the proposed fusion strategy can be observed in
the middle levels of difficulty i.e. DL-2 to DL-5. In this
band, our method outperforms almost all the other fusion
strategies in each of the four datasets. Level DL-6 is equally
bad for all the fusion strategies because the wrongly pre-
dicted event pulls the decision towards itself, by virtue of
its majority. The most difficult level i.e. DL-7 is unrecover-
able and none of the fusion strategies could render a correct
consolidated prediction.

Evaluation of SALiEnSeA. As we mentioned before, the
proposed spatial action localization technique SALiEnSeA,
can efficiently localize actions in the frame irrespective of
the relative position of the subject within a frame. From Fig-
ure 6, it is evident that our approach correlates between se-
mantically related but spatially separated objects, and thus
can generate a single attention patch around such objects.

Figure. 8: Comparison of class-wise VP accuracies at dif-
ferent hierarchies of the proposed hierarchical multi-tier fu-
sion strategy, for some selected event-classes of HMDB-51
dataset.

As evident from Figure 8, our attention scheme helps the
most in increasing performance for long-shot video classes
like “draw-sword”, “push”, etc. Also for most classes,
CNN+LSTM fusion over all the three modalities proffer
the highest accuracy, in comparison to their lower-hierarchy
counterparts. Regarding the hyperparameters, it was ex-
perimentally observed that for morphological operations,
window-size (W ) of 5 × 5 was the most efficient in sepa-
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fc1 : LSTM trained with features obtained from 1st fully-connected layer of ResNet50
fc2 : LSTM trained with features obtained from 2nd fully-connected layer of ResNet50

fcLast : LSTM trained with features obtained from the last fully-connected layer of ResNet50
Abbreviations : Sp = Spatial, Tm = Temporal, Attn = Attention

HMDB-51 [49]UCF-101 [2]KCV [1]CCV [47]TypeDeep Architecture

ResNet50 (Sp 65.57 52.16 78.70 44.04FP)
ResNet50 (Tm 48.91 28.13 54.25 38.88FP)
ResNet50 (Attn 54.61 36.84 62.56 32.83FP)

ResNet50 (Sp+Tm) 68.58 44.55 80.56 50.47FP
ResNet50 (Tm+Attn) 59.62 35.57 71.69 42.97FP
ResNet50 (Sp+Attn) 68.10 51.25 79.09 44.74FP

ResNet50 (Sp+Tm+Attn) 68.92 53.61 81.00 51.93FP

ResNet50 (Sp+Tm) VP 78.84 57.09 87.33 55.14
ResNet50 (Tm+Attn) 72.28 50.09 85.28 56.06VP
ResNet50 (Sp+Attn) 78.25 58.43 86.37 56.45VP

ResNet50 (Sp+Tm+Attn) 78.16VP 60.07 88.37 58.83

LSTMfc1 (Sp 75.93 58.96 85.47 53.33VP)
LSTMfc1 (Tm 65.65 39.93 73.35 47.80VP)
LSTMfc1 (Attn 70.23 51.31 80.39 47.30VP)

LSTMfc1 (Sp+Tm) 78.49 57.22 90.30 57.72VP
LSTMfc1 (Tm+Attn) 77.14 55.56 84.60 58.01VP
LSTMfc1 (Sp+Attn) 78.91VP 59.68 90.50 57.51

LSTMfc1 (Sp+Tm+Attn) VP 79.98 59.30 91.92 61.29
LSTMfc2 (Sp 75.85VP) 60.45 85.02 53.14
LSTMfc2 (Tm 65.14 37.69 71.48 47.01VP)
LSTMfc2 (Attn 69.97 49.06 76.89 46.12VP)

LSTMfc2 (Sp+Tm) 77.98 57.97 87.44 60.31VP
LSTMfc2 (Tm+Attn) 76.13 53.69 84.22 54.03VP
LSTMfc2 (Sp+Attn) 77.22 58.55 87.92 55.14VP

LSTMfc2 (Sp+Tm+Attn) VP 80.59 58.55 90.56 61.29
LSTMfcLast (Sp 75.68 60.07 85.34 53.27VP)
LSTMfcLast (Tm 64.80 36.94 69.42 48.39VP)
LSTMfcLast (Attn 69.72 48.31 75.99 45.60VP)

LSTMfcLast (Sp+Tm) 79.75VP 61.70 86.65 58.01
LSTMfcLast (Tm+Attn) 76.80 51.44 83.57 54.51VP
LSTMfcLast (Sp+Attn) 78.66 58.55 88.29 56.16VP

LSTMfcLast (Sp+Tm+Attn) VP 80.84 60.80 90.08 60.37

ResNet50+LSTMfc1 (Sp+Tm 64.6692.3059.0982.18VP)
ResNet50+LSTMfc1 (Tm+Attn 63.2390.0652.5677.88VP)
ResNet50+LSTMfc1 (Sp+Attn 81.33VP) 62.14 64.6991.48

ResNet50+LSTMfc1 (Sp+Tm+Attn VP) 82.84 60.80 93.87 68.29
ResNet50+LSTMfc2 (Sp+Tm 61.6692.1459.4682.26VP)

ResNet50+LSTMfc2 (Tm+Attn 62.0590.0452.1978.21VP)
ResNet50+LSTMfc2 (Sp+Attn 81.33VP) 62.14 64.6691.48

ResNet50+LSTMfc2 (Sp+Tm+Attn VP) 82.84 60.45 67.1293.76
ResNet50+LSTMfcLast (Sp+Tm 63.0592.3559.8482.01VP)

ResNet50+LSTMfcLast (Tm+Attn 61.2490.2252.9477.45VP)
ResNet50+LSTMfcLast (Sp+Attn 81.16VP) 62.14 64.6691.24

ResNet50+LSTMfcLast (Sp+Tm+Attn VP) 83.48 61.10 67.1293.79

Table 3: Performance comparison of CNN and LSTM on each modality, separately and fused

rating small noisy components from their large blob coun-
terparts. Also, an areamin covering 20 − 30% of the whole
image can almost always identify the subject of a frame, be
it long-shot or close-shot.
In Table 3, we tabulate frame-level (FP) and video-level (VP)
performances on each of the three modalities. For CCV [47],
UCF-101 [2] and HMDB-51 [49] datasets, the highest ac-
curacy is achieved by fusing ResNet50 and LSTM predic-
tions for all the three modalities. For CCV, this was achieved
when the LSTM was trained with features from the last
fully-connected layer of ResNet50. But for UCF-101 and
HMDB-51, features from the first fully-connected layer of

ResNet50 gave better results. For KCV [1], highest accuracy
is achieved by excluding temporal pipeline. Overall, it can
be observed that the attention pipeline almost always plays a
supportive role in enhancing accuracy, at each of the hierar-
chies.

D. Comparing Results with State-of-the-Arts’

In Table 4, we aim to compare our event recognition scheme
with state-of-the-arts, and adjudge how the proposed spatio-
temporal action localization comes to the aid of it. For CCV,
the fact that the result of the proposed method based on three
modalities has a better accuracy than others (Jana et al. [8], Li
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Abbreviations : Sp = Spatial, Tm = Temporal, Attn = Attention

Acc (%)Multi-stream Info?Action Localization?YearMethodDataset

C
C

V
[4

7]
OnlyTemporal Attention-Gated Model2017Pei et al. [16] Tm 63.00

rDNN (Feature-Class Relationships2017Jiang et al. [14] Sp+Tm 73.50+Acoustic)
Only multi-scaleN/A2017Umer et al. [29] Sp 80.46

75.10Frm-level CNN descriptorConceptwise Power-Law Norm2018Soltanian et al. [53]
2018Li et al. [26] Sp+Tm 80.70CNN+LSTM (Frm+OptFlow)Attention Network

Key-Frm (2019Jana et al. [8] Tm CNN+LSTM () Sp+Tm) 81.89
ResNet+LSTM (Hierarchical Attention2020Li et al. [54] Sp+Tm 74.21)

Transferred CNN+LSTM (Anchor Selection2020Zhang et al. [52] Sp+Tm 75.10)
PROPOSED Key-Frm (– Tm)+SALiEnSeA (Sp CNN+LSTM (Attn+) Sp+Tm) 83.48

K
C

V
[1

]

Space-Time (N/A2013Chen et al. [55] Sp+Tm 49.61) features
55.60GLocal Feature SelectionN/A2014Yan et al. [56]

OnlyN/A2019Jana et al. [31] Tm 52.41
Key-Frm (2019Jana et al. [8] Tm CNN+LSTM () Sp+Tm) 57.52

PROPOSED Key-Frm (– Tm)+SALiEnSeA (Sp CNN+LSTM (Attn+) Sp+Tm) 62.14

U
C

F-
10

1
[2

]

Slow-Fusion (Fovea Stream (Center-Crop)2014Karpathy et al. [18] Tm), MultiRes-CNN (Sp 68.00)
N/A2014Simonyan et al. [57] Sp+Tm 88.00ConvNet

80.10Frm-level CNN descriptorConceptwise Power-Law Norm2018Soltanian et al. [53]
82.803-stream ConvNet+FusionNetBackground Subtraction Feature2018Li et al. [13]

2018Li et al. [26] Sp+Tm 91.60CNN+LSTM (Frm+OptFlow)Attention Network
2018Peng et al. [25] Sp+Tm Attention Sp+Tm Collaborative Learning 94.00

Key-Frm (2019Jana et al. [8] Tm CNN+LSTM () Sp+Tm 89.03)
Transferred CNN+LSTM (Anchor Selection2020Zhang et al. [52] Sp+Tm 88.00)

SAM+TAM2020Liu et al. [6] Sp+Tm Attention ConvNet 94.33
PROPOSED Key-Frm (– Tm)+SALiEnSeA (Sp CNN+LSTM (Attn+) Sp+Tm 93.87)

H
M

D
B

-5
1

[4
9] N/A2014Simonyan et al. [57] Sp+Tm 59.40ConvNet

OnlyPose-regularized Attn Pool2017Girdhar et al. [58] Sp 54.40
55.583-stream ConvNet+FusionNetBackground Subtraction Feature2018Li et al. [13]

2018Peng et al. [25] Sp+Tm Attention Sp+Tm Collaborative Learning 68.70
Key-Frm (2019Jana et al. [8] Tm CNN+LSTM () Sp+Tm 61.91)

Transferred CNN+LSTM (Anchor Selection2020Zhang et al. [52] Sp+Tm 59.10)
SAM+TAM2020Liu et al. [6] Sp+Tm Attention ConvNet 69.14

PROPOSED Key-Frm (– Tm)+SALiEnSeA (Sp CNN+LSTM (Attn+) Sp+Tm 68.29)

Table 4: Performance comparison of different approaches on each of the four datasets. The top two accuracy scores are
highlighted in gray.

et al. [26] and Zhang et al. [52]) reliant on only two modali-
ties is an indicator of the benefit of having a separate attention
pipeline. Regarding KCV dataset also, the proposed method
outperforms other methods by achieving an overall accuracy
of 62.14%. Our method achieves the third position in the
UCF-101 and HMDB-51 datasets, by managing to correctly
predict 93.87% and 68.29% of their respective test-set.

V. Conclusion and Future Scope

In this paper, an automated event and activity recognition
system is developed, that specializes in handling uncon-
strained untrimmed low-quality videos. For this, we focus
on a preprocessing step involving spatio-temporal action-
localization that discards the bulks of information in a video
and brings out the most salient ‘attention’ pieces that are ben-
eficial to classify a video. Temporal attention is achieved by
action-localization on the time axis whereby, a set of rep-
resentative key-frames are extracted from the video. The
iterative graph-based approach is such that the distinct-
ness amongst the chosen key-frames and their difference in
time-of-appearance are maximized simultaneously. The in-
puts to attention pipeline is proffered through the proposed
SALiEnSeA technique of identifying the high-motion action
patch in a video key-frame by adjudging dynamicity of ho-
mogeneous motion components. For classification, a three-

pipeline hybrid ResNet+LSTM deep architecture is proposed
along with a hierarchical late decision-fusion scheme, to
combine frame-level and video-level predictions.
In comparison to common late decision-fusion strategies in
use, the biased-conflation based fusion was observed to prof-
fer much higher accuracy when three modalities were fused
simultaneously. In fact, the corrective performance i.e. the
ability to correct a fused prediction when majority of its con-
stituent predictions are wrong, is the highest. The attention
pipeline proved to be beneficial for improving accuracy, in
all the datasets. It was finally observed that the proposed
approach outperformed recent state-of-the-arts in datasets of
CCV and KCV that are purely constituted of unconstrained
and untrimmed videos. Also, our results are at-par with the
state-of-the-arts in identifying fine-grained human actions
like those in datasets of UCF-101 and HMDB. In the future
we aim to incorporate ideas of ethical machine learning to
do away with intra- and inter-modality biasness in the multi-
stream ResNet+LSTM hybrid architecture.
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