
Abstract: This paper introduces the concept of near duplicate
dataset, a quasi-duplicate version of a dataset. This version has
undergone an unknown number of row and column insertions
and deletions (modifications on schema and instance). This con-
cepts is interesting for data exploration, data integration and
data quality. To formalise these insertions and deletions, two
parameters are introduced. Our technique for detecting these
quasi-duplicate datasets is based on features extraction and ma-
chine learning. This method is original because it does not rely
on classical techniques of comparisons between columns but on
the comparison of metadata vectors summarising the datasets.
In order to train these algorithms, we introduce a method to
artificially generate training data. We perform several exper-
iments to evaluate the best parameters to use when creating
training data and the performance of several classifiers. In the
studied cases, these experiments lead us to an accuracy rate
higher than 95%.
Keywords: Machine Learning ,Entity Resolution, Record Linkage,
Data Quality, Data Integration, Data Profiling

I. Introduction

In our post-digital transition world, data has become a valu-
able asset for any company, regardless of its scale, and great
efforts are made to choose how to store it optimally [40].
Data is widely used to make decisions, but most of the data
stores in the world lack quality and this lack of quality has
a huge cost. In order to improve the quality of data, we be-
lieve it is essential to learn about data and the minimum we
need to know is whether we already have the data. There is a
lot of literature to identify near duplicate documents [1]. In
the database world, nearly duplicated datasets (also known
as fuzzy duplicated [4]) detection is a sub-domain of record
linkage domain [5] also called entity resolution [6, 8]. Fig-

ure 1 describe the classical process of detection of near du-
plicated data. The data is first prepared (enriched, cleaned,
standardised) to make it more easily comparable [15]. The
second step is to reduce the search space in order to reduce
the number of comparisons to be performed [14]. The el-
ements of each candidate pair are then compared at the at-
tribute level using classical or learned similarity measures
[13]. The results of these comparisons are then used to deter-
mine whether the pair of candidates is duplicated or not. This
decision can be made using simple models using distances
or more complex ones based on machine learning[7, 12]. Fi-
nally, in a last step, the results are clustered in order to obtain
a consistency in the results[11].
In this paper, we present an original method using machine
learning that does not presuppose any knowledge of the
data, nor does it attempts to identify its schema, and sum-
marises each dataset as a metadata vector. This research
focuses on semi-structured data and therefore to ”instance
level modifications”[22]. This study is part of a larger project
aiming at extracting metadata in data lake type architectures.
This metadata is then used to facilitate data integration, im-
prove data quality and make data exploration more accessible
[16].

II. Problem description

We consider a dataset DS as an instance I of an unknown
relational schema R, composed of K columns.
Each record is called a tuple t (a row). Each column C in
the dataset can be seen as a multiset [2]. C = (e1, e2, .., eL)
contains L elements. We call L the length of the column.
Each e is an element of a multiset D called domain. A near
duplicate dataset (NDDS) is defined as a modified version of
an existing dataset. In this new version θ columns have been

MIR Labs, USA

Submitted: 21 Feb, 2022; Accepted: 25 Mar, 2022; Publish: 4 July, 2022

Detecting near duplicate dataset with machine
 learning

Marc Chevallier1, Nicoleta Rogovschi1, Faouzi Boufarès1, Nistor Grozavu1 and Charly Clairmont2

 1LIPN Laboratory, Sorbonne Paris Nord University
99 Av. Jean Baptiste Clément, 93430 Villetaneuse, France

mchevallier@lipn.univ-paris13.fr nicoleta.rogovschi@lipn.univ-paris13.fr
faouzi.boufares@lipn.univ-paris13.fr
nistor.Grozavu@lipn.univ-paris13.fr

2Synaltic
24 Rue de l’ Église, 94300 Vincennes

cclairmont@synaltic.fr

International Journal of Computer Information Systems and Industrial Management Applications.
ISSN 2150-7988 Volume 14(2022) pp. 374-385
© MIR Labs, www.mirlabs.net/ijcisim/index.html

Detecting near duplicate dataset with machine learning

Figure. 1: The five steps of a typical duplicate detection pipeline based on pairwise record comparisons as described by Panse
and Naumann [22]. The steps we study in this paper are circled in red

added and ι deleted.
We denote ζ = 10 ∗ θ+ι

K
Moreover beta lines have been deleted and gamma lines in-
serted.
We denote α = β+γ

L .
The problem is to identify if a DS is a near duplicate version
of another dataset with unknown α and ζ parameters.

III. Features

In order to identify near duplicates datasets we will use an
approach based on machine learning. To do so we have
to extract from each dataset a fixed-length vectors of fea-
tures. A way to perform this extraction is introduced in Sher-
lock [35] (for Semantic Data Type Detection) but only for
columns. We successfully applied this method to near dupli-
cate columns detection [31]. In order to use this method for
datasets we concatenate each dataset in a single column. We
have introduced several changes to the original features.
First all datasets are preprocessed to be only in lowercase.
This transformation allows us to reduce the number of fea-
tures to extract. Indeed a part of the features depends on the
count of the number of each character in each of the cells,
each additional character increases the number of features by
6. This choice allows us to reduce the time of extraction of
the features as well as to facilitate the learning process with-
out reducing accuracy.
Secondly, we do not use all the features present in Sherlock.
First of all, out of the four main types of features extracted
in Sherlock, two are from word embedding [28, 27]. These
features are not useful in this case and will not be used. Fi-
nally in the original characteristics the length of the column
to be studied is a particularly important piece of information.
Indeed this length is used as a characteristic directly and also
intervenes in the calculation of several characteristics. Thus
in the use of these features for semantic type recognition us-
ing a random forest, the column length is the feature with the
most weight in the decision making [35]. However, we do
not want the size of the column to intervene in the decision
making process. We do not consider that the length of the
dataset should be involved because it is very easy to change
the length of a dataset using duplicate elements of the dataset
to make it appear unduplicated. We therefore chose to keep
only the features that do not depend on the column size to
form our final feature vector. In order to show the difference

between the two approaches we have performed an exper-
iment. We will randomly (uniformly) draw 300 subsets of
size 5, 10, 20, 30, 50, 100, 200, 500, 1000, 2000, 5000 in a
column of the semantic type Date in YYYY format. We will
then extract from each of these subsets the feature vectors us-
ing our method as well as Sherlock’s method (without word
embeding). Then we will compute the norm of these vec-
tors for each of the subset sizes and represent them in figures
3 and 4. Thus, it can be seen that the norms of the feature
vectors from the original method grow proportionally to the
increase in the size of the columns studied. On the contrary,
the norm of the feature vectors resulting from our method
shows little variation, these variations being mainly present
in the small dimension subsets.

Figure. 2: Features extraction process

We extract two kinds of features from the concatenated
dataset. The first one is built with global statistics on the con-
catenated dataset : entropy, the average number of each type
of cells (numerical, special, none), descriptive statistics (min,
max ,var, mean, median) on a vector containing the length of

375

Chevallier, Rogovschi, Boufares, Grozavu and Clairmont

the string in each element (for a total of 22 features).
For the second type of features, we start by counting the
number of occurrences of each character in the following list,
{’0’, ’1’, ’2’, ’3’, ’4’, ’5’, ’6’, ’7’, ’8’, ’9’, ’a’, ’b’, ’c’, ’d’,
’e’, ’f’, ’g’, ’h’, ’i’, ’j’, ’k’, ’l’, ’m’, ’n’, ’o’, ’p’, ’q’, ’r’, ’s’,
’t’, ’u’, ’v’, ’w’, ’x’, ’y’, ’z’, ’é’, ’è’,’! ’, ’’̈, ’#’, ’$’, ’%’, ’&’,
””́, ’(’, ’)’, ’*’, ’+’, ’,’, ’-’, ’.’, ’/’, ’:’, ’;’, ’¡’, ’=’, ’¿’, ’?’, ’@’,
’[’, ’]’, ’ ’, ’‘’, ’{’, ’|’, ’}’, ’˜’, ’́, ’\x0c’} in each element, so
we can form vectors from this count.
Then we extract descriptive statistics (min, max ,var, mean,
median, presence or absence of the character, presence or
absence of the character in all rows) from these vectors to
form our feature vectors (for a total of 476 features). Figure
2 summarises this step. The final result is a vector of 498
features.

Figure. 3: Average of the Euclidean norm of the sherlock
feature vector for several vector sizes

Moreover, in algorithm 3, we will need to merge two feature
vectors into one, this can be done in several ways, we will
test two. For two vectors v1, v2 of the same dimension. The
first possibility is :

if|v1[k]|+ |v2[k]| ≠ 0, V [k] =
|v1[k]− v2[k]|
|v1[k]|+ |v2[k]|

elseV [k] = 0

(1)

The second:

V [k] = |v1[k]− v2[k]| (2)

Formula 1 was originally chosen for the detection of near
duplicated columns[31]. Indeed after testing against formula
2 it increased the accuracy obtained by 3% (for a random
forest [24]) so we kept it for the detection of near duplicated
datasets[32].

An important thing to note about these characteristics is the
speed of extraction. Indeed it is a limiting factor in the use

Figure. 4: Average of the Euclidean norm of the our feature
vector for several vector sizes

of our method. Beyond 100 000 lines it becomes too long to
extract the features. The extraction time as a function of the
number of lines is represented in figure 5 and table 1(we use
an optimised version of the implementation made in Sherlock
which is about twice as fast). The execution times presented
are calculated from an average of 50 repetitions of the same
calculation.

Figure. 5: Extraction time in terms of the number of lines

IV. Algorithms

The algorithm 1 generates a dataset from a set of
columns named universe. The dataset built this way
counts nbr col columns and nbr line lines. The function
pick in universe(universe) randomly picks a column in the

376

Detecting near duplicate dataset with machine learning

Table 1: Execution times in terms of the number of lines

nbr of lines 1000 10000 20000 50000 100000 200000
time in s 0.0491 0.40 0.84 2.10 3.98 7.98

universe (and returns the index of this column in the uni-
verse). The function generate col from ori randomly picks
nbr line elements in a list of elements. We use this function
to generate a column of the wanted size from a big list of el-
ements.
The algorithm 2 creates a near duplicate version of an exist-
ing dataset. The function concat elem concatenates for each
line in the dataset all the elements of the line. So when we
call this function the dataset is reduced to a single column.
The function random line adds and deletes to a dataset con-
catenated this way. We will use this algorithm in order to
generate examples of NDDS for our learning and test sets.

Algorithm 1: RandomDataset generates a dataset
from a list of columns named universe. The algo-
rithm also returns the indexes of the columns used in
the universe

input : universe, nbr col, nbr line
initialisation : DataSet← [], index universe← []
for i← 1 to nbr col do

original, index← pick in universe(
universe)
index universe[i]← index
DataSet[i]← generate col from ori(
original, nbr line)

end
return DataSet,index universe

The algorithm 3 generates an example of each class. The
function make features extracts temporary feature vector
from each dataset and builds the final feature vector using
the formula 1 or 2.
In order to validate the pertinence of our method we use the
algorithm 3 in a loop. We generate this way 1000 examples
of each class (with formula 1) and then we project them in a
bi-dimensional space using t-SNE [3] (perplexity : 30). The
result is represented in fig 7.

Figure. 6: NNDDS and NDDS for α ∈ [0, 3] and ζ ∈ [0, 3],
10 columns with formula 1

Algorithm 2: AlterateDataset generates a near du-
plicate version of a dataset by adding and deleting
columns and then lines to the dataset. The function
returns the near duplicate version (with columns con-
catenated) and the number of columns used to build
it

input : universe, Dataset ,list index, α , nbr modif
initialisation : cDataset← copy(Dataset),
index universe← [],
clist index← copy(list index),
nbr alteration← round(α*length(cDataset))

for i← 0 to nbr modif do
if Random(True, False) then

original, index← pick in universe(
universe) add
generate col from ori(original,

length(cDataset[0]) to cDataset
add index to index universe

else
r = random(0, length(cDataset)− 1)
delete cDataset[r]
delete index universe[r]

end
end
cDataset = concat elem(cDataset)
for i← 0 to nbr alteration do

if Random(True, False) then
else

add
random line(universe, index universe)
to cDataset

end
randomly delete an element from cDataset
return cDataset, length(index universe)

end

Algorithm 3: GenerateExemple returns two features
vectors, one for a couple (DS,NNDDS) and the other
for the couple (DS,NDDS)

input : universe, nbr col, α, ζ, minline, maxline
Dataset, indice universe← RandomDataset(
universe, nbr col, RandBetween(minline,maxline)

alterateDS, len indice← AlterateDataset(
universe,Dataset, indice universe, αround((ζ/10)∗
nbr col)

negDs, useless← RandomDataset(
universe, len indice,RandBetween(
minline,maxline))
Dataset← concat elem(Dataset)
negDs← concat elem(negDs)
x pos← make features(Dataset, alterateDS)
x neg ← make features(Dataset, negDs)
return x pos, x neg

377

Chevallier, Rogovschi, Boufares, Grozavu and Clairmont

V. Experiments

Our experimental setup is a Colab notebook with a Xeon
2.30GHz 4 cores CPU and 25go of Ram and a tesla P100
(16go).
During all our experiments we will use the algorithm 3 in a
loop in order to generate our learning and test sets. For the
learning set the universe is formed of 100 columns contain-
ing each a minimum of 8000 elements. For the test set the
universe is formed of 50 columns containing each a mini-
mum of 8000 elements. Those two universes come from a
manual collect of data on kaggle dataset 1.
In most experiments, if not specified, the number of lines for
each dataset is randomly chosen between 50 and 300.

A. Influence of ζ parameter

Our first experiment uses the algorithm 3 in order to generate
7500 examples of each class with the following parameters
: α equal to 2, number of columns (nbr col) equal to 10, ζ
equal to 0, 1, 2, 3 or randomly selected between 0 and 4 (for
each couple of examples). In each scenario a random for-
est (RF) classifier [24] is trained (200 estimators, max depth
18) to distinguish between NNDS and NDDS. Tests are done
with the datasets generated the same way (without the ver-
sion with the random selection of ζ) but only with 500 ex-
amples of each class. The aim of this is to determine the best
value of ζ parameter to use.

B. Influence of the number of columns

In our second experiment we will explore the influence of
the columns number used to build the examples. We will
generate multiple learning and test sets with the following
parameters : α randomly picked between 0 and 3 (for each
generated example), ζ randomly picked between 0 and 4 (for
each generated example). The number of columns will vary
: 5, 10, 20 or random choice between 5 and 22 (for each
example) for the learning set; 5, 8, 11, 14, 17 and 20 for
the test set. The number of examples and the classifier are
identical to those in experiment V-A.

C. Evaluating multiple classifier

In our third experiment we generate our learning set using
following parameters : α randomly picked between 0 and 3
(for each generated example), ζ randomly picked between 0
and 4 (for each generated example), the number of columns
randomly picked between 5 and 22 (for each generated ex-
ample). For the test sets we use following parameters : α and
ζ varying between 0 and 3, the number of columns randomly
picked between 5 and 22 (for each generated example). We
decided to test 6 classifiers : a boosting algorithm, two gra-
dient boosting algorithms, a Random forest, a deep neural
network and a stacking algorithm. The six classifiers we use
are adaboost[29] (500 estimators), a Light Gradient Boost-
ing Machine (LGBM)[26], (200 estimators, max depth 14,
nbr of leaf 12000), catboost [25] classifier (3000 iterations,
depth 4, learning rate 0,1), a Random forest classifier (200
estimators, max depth 18), TabNet[34](n d 8, n a 8, n steps

1https://www.kaggle.com/datasets

3) and a Stack of the 5 previous classifier (cross validation
3,Meta-Model : logistic regression)[30].

D. Optimisation

In this experiment we will try to improve the execution time
of the algorithm. First the feature extraction process requires
counting the characters present in each element, the compu-
tation time increases with the number of lines in the dataset.
This increase can be seen in figure 5. Thus, when the dataset
has more than 100000 lines the extraction time becomes a
problem.
To overcome this problem we propose two alternative meth-
ods of feature extraction to reduce the computation time. In
the first one we will not extract directly the features on the
whole concatenated data-set but on samples of it. Then for
each sample we will extract the characteristics as before. Our
final feature vector is then constructed by taking the average
of the results obtained on the samples dimension by dimen-
sion. This gives us a vector of the same size as before, we
will call this technique ”method 1”. The second method is
simply to extract features on a sample of the concatenated
data-set and not on the whole, we call this ”method 2”. The
experimental parameters are the same as in experiment V-
C. However, we modify the size of the generated datasets,
which is randomly chosen between 2000 and 3000 in order
to simulate datasets of larger size.

VI. Results

This part presents the results of all the experiments described
in the experimental section.

A. Influence of ζ parameter

Table 2: Accuracy for various ζ values

Learning ζ
Test ζ

0 1 2 3 mean

0 1 0.764 0.649 0.578 0.748
1 0.999 0.994 0.941 0.876 0.952
2 0.999 0.998 0.984 0.951 0.983
3 0.997 0.997 0.989 0.971 0.988
random(0,4) 0.998 0,998 0,985 0.954 0.984

Table 2 contains the results of the first experiment. Firstly,
we can observe that selecting a low value of ζ in order to
build the learning set leads to low accuracy. This is normal
because this algorithm faces totally unseen situations. On
the contrary, when ζ is high, results are good in all situa-
tions, the system had already seen examples equivalent to a
lower ζ (because of the randomness when we add and delete
columns in 2). In another of our work (which only focuses
on columns) we have discovered that using a random α (be-
tween 0 and 3) for every generated near duplicate example in
the training set leads to the best accuracy [31]. So it is inter-
esting to observe that it is not the case for the ζ parameter,
setting ζ to 3 leads to similar or better results than using a
random ζ.

378

Detecting near duplicate dataset with machine learning

B. Influence of the number of columns

Results of the second experiment in the tab 3 show us that
the number of columns used to build the examples for the
learning set has no influence on the results (in our scenario).
This is interesting because it means that we can have good
results without having to create examples for each number of
columns.

C. Evaluating multiple classifier

The tabs 4 to 7 and the fig 7 to 18, represent all the results
of the third experiment. We can observe the same pattern
on the heatmaps, a progressive degradation of the results
with the increase of the α and ζ parameters. The effects of
increasing α are quite small compared to those of ζ. Indeed,
a dataset usually contains many more rows than columns,
so changes at the column level have a greater impact on the
features we extract than changes at the row level. This is
especially true when the number of columns is low. We can
see that using formula 1 or formula 2 has little influence on
the results of most of the classifiers. Only RF and TabNet
show a noticeable loss of accuracy with the use of formula 2.
Despite the use of a powerful implementation specialised for
tabular data, the neural network shows performances below
those of other classifiers. The random forest presents slightly
inferior results than the boosting algorithms, indeed although
its results are the best when zeta is low this classifier suffers
from a greater loss of accuracy than the others for higher
zeta values. The boosting algorithms have similar results,
but Catboost is the algorithm with the best overall results.
Finally we can see that stacking in this problem does not
bring any benefit.

Figure. 7: Accuracy of RF classifier for α ∈ [0, 3] and ζ ∈
[0, 3] with for formula 1

Tables 8 and 9 describe the most important characteristics
when making decisions for catboost and RF. First of all we
can see that the most important characteristic in all cases is
the entropy. Indeed, it will describe globally the dataset and
changes in the dataset will lead to changes in the entropy.
Then we can notice the presence of a large number of statis-

Figure. 8: Accuracy of RF classifier for α ∈ [0, 3] and ζ ∈
[0, 3] with for formula 2

Figure. 9: Accuracy of catboost classifier for α ∈ [0, 3] and
ζ ∈ [0, 3] with for formula 1

Figure. 10: Accuracy of catboost classifier for α ∈ [0, 3] and
ζ ∈ [0, 3] with for formula 2

379

Chevallier, Rogovschi, Boufares, Grozavu and Clairmont

Table 3: Accuracy in function of the number of columns used to build training set and test set

train nbr col
Test nbr col

5 8 11 14 17 20 mean

5 0.967 0.955 0.968 0.967 0.971 0.978 0.968
10 0.967 0.968 0.971 0.976 0.976 0.976 0.972
20 0.961 0.962 0.971 0.974 0.979 0.978 0.971
random(5,22) 0.969 0,965 0,965 0.973 0.974 0.978 0.970

Table 4: Accuracy of six classifiers for different couples of (α,ζ) values with formula 1 part 1.

models
(α,ζ)

(0,0) (1,0) (2,0) (3,0) (0,1) (0,2) (0,3) (1,1) (1,2)

Catboost 0.992 0.995 0.992 0.993 0.992 0.99 0.981 0.996 0.989
RF 0.994 0.996 0.994 0.995 0.995 0.981 0.966 0.998 0.987
LGBM 0.991 0.995 0.991 0.992 0.992 0.988 0.984 0.995 0.987
TabNet 0.965 0.968 0.975 0.969 0.966 0.948 0.926 0.957 0.939
adaboost 0.99 0.994 0.994 0.991 0.989 0.988 0.986 0.993 0.983
Stacking 0.992 0.997 0.993 0.993 0.993 0.989 0.982 0.996 0.99

Table 5: Accuracy of six classifiers for different couples of (α,ζ) values with formula 1 part 2.

models
(α,ζ)

(1,3) (2,1) (2,2) (2,3) (3,1) (3,2) (3,3) mean

Catboost 0.983 0.99 0.984 0.98 0.993 0.984 0.971 0.9874
RF 0.967 0.992 0.979 0.96 0.996 0.978 0.953 0.9830
LGBM 0.982 0.989 0.984 0.971 0.99 0.979 0.968 0.9859
TabNet 0.924 0.95 0.930 0.908 0.96 0.925 0.91 0.9446
adaboost 0.981 0.991 0.982 0.973 0.992 0.98 0.977 0.9861
Stacking 0.982 0.992 0.984 0.974 0.994 0.985 0.97 0.9876

Table 6: Accuracy of six classifiers for different couples of (α,ζ) values with formula 2 part 1.

models
(α,ζ)

(0,0) (1,0) (2,0) (3,0) (0,1) (0,2) (0,3) (1,1) (1,2)

Catboost 0.993 0.992 0.99 0.991 0.994 0.988 0.984 0.991 0.99
RF 0.997 0.999 0.997 0.997 0.992 0.97 0.94 0.986 0.966
LGBM 0.996 0.995 0.994 0.995 0.996 0.99 0.979 0.993 0.989
TabNet 0.995 0.992 0.99 0.979 0.973 0.938 0.897 0.957 0.923
adaboost 0.996 0.998 0.996 0.995 0.996 0.988 0.971 0.993 0.985
Stacking 0.997 0.998 0.997 0.997 0.998 0.986 0.968 0.994 0.985

Table 7: Accuracy of six classifiers for different couples of (α,ζ) values with formula 2 part 2.

models
(α,ζ)

(1,3) (2,1) (2,2) (2,3) (3,1) (3,2) (3,3) mean

Catboost 0.982 0.989 0.986 0.975 0.99 0.983 0.973 0.9866
RF 0.945 0.983 0.966 0.93 0.982 0.962 0.915 0.9701
LGBM 0.979 0.989 0.981 0.968 0.99 0.98 0.96 0.9856
TabNet 0.9 0.945 0.913 0.876 0.948 0.903 0.856 0.9365
adaboost 0.973 0.986 0.978 0.961 0.991 0.978 0.96 0.9839
Stacking 0.964 0.993 0.98 0.957 0.992 0.975 0.946 0.9827

380

Detecting near duplicate dataset with machine learning

Figure. 11: Accuracy of LGBM classifier for α ∈ [0, 3] and
ζ ∈ [0, 3] with for formula 1

Figure. 12: Accuracy of LGBM classifier for α ∈ [0, 3] and
ζ ∈ [0, 3] with for formula 2

Figure. 13: Accuracy of TabNet classifier for α ∈ [0, 3] and
ζ ∈ [0, 3] with for formula 1

Figure. 14: Accuracy of TabNet classifier for α ∈ [0, 3] and
ζ ∈ [0, 3] with for formula 2

Figure. 15: Accuracy of Adaboost classifier for α ∈ [0, 3]
and ζ ∈ [0, 3] with for formula 1

Figure. 16: Accuracy of Adaboost classifier for α ∈ [0, 3]
and ζ ∈ [0, 3] with for formula 2

381

Chevallier, Rogovschi, Boufares, Grozavu and Clairmont

Figure. 17: Accuracy of Stack classifier for α ∈ [0, 3] and
ζ ∈ [0, 3] with for formula 1

Figure. 18: Accuracy of Stack classifier for α ∈ [0, 3] and
ζ ∈ [0, 3] with for formula 2

tics on the separating characters such as ”.’, ’/’ or ”-” these
characters are very present in a small number of types (se-
mantic) of columns and very few in the others which makes
them very distinctive. Finally, we notice in this top 10 the
presence of many statistics which concern letters not very
frequent in English (the language of our examples) for ex-
ample ’z’[20], but also of the number 9 which is a number
rarely present in the real data [21]. This makes a change in
the number of these characters very distinctive.

Table 8: Top 10 features for catboost and Rf models with
formula 1, ranked in descending order by their gini impurity
score.

catboost formula 1 RF formula 1
Entropy Entropy

Mean number of ’f’ Mean number of ’,’
Median number of ’.’ Mean number of ’z’
Mean number of ’-’ Mean number of ’q’

Var number of ’.’ Var number of ’,’
Median number of ’0’ Var number of ’q’

Mean number of ’/’ Mean number of ’/’
Mean number of ’+’ Mean number of ’-’
Var number of ’9’ Var number of ’0’

Mean number of ’-’ Mean number of ’f’

Table 9: Top 10 features for catboost and Rf models with
formula 2, ranked in descending order by their gini impurity
score.

catboost formula 2 RF formula 2
entropy entropy

Std of numerical chars cells Std of number of numerical chars cells
Mean number of ’-’ Mean number of ’,’
Mean number of ’.’ Mean number of ’-’
Mean number of ’f’ var number of ’.’
Mean number of ’q’ var number of ’f’

Std number of words cells Mean number of words cells
’.’ char in all cells Std of number alphabetical chars in cells

Mean number of ’/’ max number of ’,’
Median of string length max number of ’0’

After all these experiments we can conclude that formula 2
is the best because it gives very similar results to formula 1
while being easier to calculate. Moreover, in other experi-
ments we have performed in which more similar negative
examples (e.g. an altered version with alpha equal to 5) are
used, formula 2 continues to have the same results while
those of formula 1 decrease. Moreover, it should be noted
that these results are dependent on the method of generation
and testing and that not all cases can be covered and that the
algorithms must be adapted to each situation. For example,
by modifying the function that RandomDataset (algorithm
1) we can generate two datasets with the same number of
rows and whose columns have the same semantic type.
Furthermore as these columns are sampled in the same way
from the columns present in the universe they are extremely
similar while being different. By using this method to
create 1000 additional negative examples during training
we can modify the results on the test data. The accuracy of
catboost on our previous test method falls to 93.8% although
it is 97.1% on the examples generated in the way we just
described (accuracy calculated on examples generated from
test data). Since there is no ground truth, it is necessary to
adapt the method of generating learning examples according

382

Detecting near duplicate dataset with machine learning

to the expected real data.

D. Optimisations

Table 10: Accuracy of six classifiers for the two formulas for
the methods 1 and 2

models
formula

1 2

Catboost m1 0.9835 0.9852
Catboost m2 0.9615 0.9711

RF m1 0.9673 0.9573
RF m2 0.9560 0.9528

LGBM m1 0.9774 0.9774
LGMB m2 0.9566 0.9660

TabNet m1 0.8883 0.8412
TabNet m2 0.8343 0.8700

adaboost m1 0.9741 0.9750
adaboost m2 0.9442 0.9638

As in our previous tests, catboost shows the best results in
all scenarios. Method 2, although more easily parallelizable,
gives inferior results to method 1. It is particularly interest-
ing to note that the loss of accuracy is negligible with cat-
boost. Thus by using method 1 and catboost we can divide
by two the extraction time while losing only 0.3% of accu-
racy. These results must however be treated with caution be-
cause our example generation algorithm does not generate all
possible cases.
In conclusion, we can add that in a realistic environment, two
optimisations are possible. First we can reduce the search
space of the candidate peers. To do this we can use a local
sensitive hashing algorithm. We have tested the version us-
ing random projections to generate the hash code. On the
examples we tested the nearly duplicated elements were al-
ways in the same bucket [18, 9](choose carefully the number
of bits and hashtables). Thus for a new dataset, we will only
test datasets in the same bucket as the new value with our
algorithm. The results can be further improved by using a
density sensitive hashing function [10].
Secondly, to more finely select the datasets identified as al-
most duplicated we can calibrate [19] the output probabilities
of the classifier and use a threshold.

VII. Conclusion

In this study we introduced the new concept of nearly dupli-
cated datasets. In order to identify these nearly duplicated
datasets we developed a method using a classifier to distin-
guish nearly duplicated datasets. To test this method, we in-
troduced a technique to generate relevant examples to train
our classifier. In order to optimise results we performed sev-
eral experiments to determine the best parameters to use in
order to generate the training set. All these investigations
led us to a good recognition rate of more than 95% in useful
cases. More research needs to be done to generate more dif-
ferent cases to make learning more resilient. In future work,
we will attempt to reduce the number of features using fea-
ture selection algorithms [17, 38, 39]. We will also test other
metrics as well as evaluate the effects of increasing the size
of the universe.

In addition, further studies need to be done with classical
data generation [36] and data pollution [37] tools in order to
evaluate the results of our algorithm under other conditions
as well as to establish a benchmark for comparison with other
algorithms.

Acknowledgements

I gratefully acknowledge Astrid Balick for her generous sup-
port. Supported by organization Synaltic

References

[1] Broder, A. Identifying and filtering near-duplicate doc-
uments. Annual Symposium On Combinatorial Pattern
Matching. pp. 1-10 (2000)

[2] Haas, P., Naughton, J., Seshadri, S. & Stokes, L.
Sampling-Based Estimation of the Number of Distinct
Values of an Attribute. Proceedings Of The 21th In-
ternational Conference On Very Large Data Bases. pp.
311-322 (1995)

[3] Van der Maaten, L. & Hinton, G. Visualizing High-
Dimensional Data Using t-SNE. Journal Of Machine
Learning Research. 9 pp. 2579-2605 (2008)

[4] Panse, F. & Naumann, F. Evaluation of Duplicate De-
tection Algorithms: From Quality Measures to Test
Data Generation. 2021 IEEE 37th International Con-
ference On Data Engineering (ICDE). pp. 2373-2376
(2021,4)

[5] Herzog, T. Data quality and record linkage techniques.
(Springer,2007)

[6] Papadakis, G., Ioannou, E. & Palpanas, T. Entity reso-
lution: Past, present and yet-to-come: From structured
to heterogeneous, to crowd-sourced, to deep learned.
(2020), EDBT/ICDT 2020 Joint Conference ; Confer-
ence date: 20-03-2020 Through 02-04-2020

[7] Jahns, V. Principles of Data Integration by An-
hai Doan, Alon Halevy, Zachary Ives. SIG-
SOFT Softw. Eng. Notes. 37, 43 (2012,9),
https://doi.org/10.1145/2347696.2347721

[8] Ngueilbaye, A., Wang, H., Mahamat, D. & El-
gendy, I. SDLER: stacked dedupe learning for
entity resolution in big data era. The Journal
Of Supercomputing. 77, 10959-10983 (2021,3),
https://doi.org/10.1007/s11227-021-03710-x

[9] Wang, J., Shen, H., Song, J. & Ji, J. Hashing for Simi-
larity Search: A Survey. ArXiv. abs/1408.2927 (2014)

[10] Lin, Y., Cai, D. & Li, C. Density Sensitive Hashing.
IEEE Transactions On Cybernetics. 44 pp. 1362-1371
(2014)

[11] Draisbach, U., Christen, P. & Naumann, F. Transform-
ing Pairwise Duplicates to Entity Clusters for High-
Quality Duplicate Detection. J. Data And Information
Quality. 12 (2019,12), https://doi.org/10.1145/3352591

383

Chevallier, Rogovschi, Boufares, Grozavu and Clairmont

[12] Christen, P. Automatic Record Linkage Using
Seeded Nearest Neighbour and Support Vector Ma-
chine Classification. Proceedings Of The 14th ACM
SIGKDD International Conference On Knowledge
Discovery And Data Mining. pp. 151-159 (2008),
https://doi.org/10.1145/1401890.1401913

[13] Naumann, F. & Herschel, M. An Introduc-
tion to Duplicate Detection. Synthesis Lec-
tures On Data Management. 2, 1-87 (2010,1),
https://doi.org/10.2200/s00262ed1v01y201003dtm003

[14] Papadakis, G., Skoutas, D., Thanos, E. & Palpanas,
T. Blocking and Filtering Techniques for Entity Res-
olution: A Survey. ACM Comput. Surv.. 53 (2020,3),
https://doi.org/10.1145/3377455

[15] Koumarelas, I., Jiang, L. & Naumann, F. Data Prepa-
ration for Duplicate Detection. Journal Of Data And
Information Quality (JDIQ). 12 pp. 1 - 24 (2020)

[16] Abedjan, Z., Golab, L., Naumann, F. & Pa-
penbrock, T. Data Profiling. Synthesis Lec-
tures On Data Management. 10, 87 (2018,11),
https://doi.org/10.2200/s00878ed1v01y201810dtm052

[17] Chevallier, M., Rogovschi, N., Boufarès, F., Grozavu,
N. & Clairmont, C. Seeding Initial Population, in Ge-
netic Algorithm for Features Selection. Advances In In-
telligent Systems And Computing. pp. 572-582 (2021),
https://doi.org/10.1007/978-3-030-73689-7 55

[18] Andoni, A. & Indyk, P. Near-Optimal Hashing Al-
gorithms for Approximate Nearest Neighbor in High
Dimensions. Commun. ACM. 51, 117-122 (2008,1),
https://doi.org/10.1145/1327452.1327494

[19] Niculescu-Mizil, A. & Caruana, R. Predicting
Good Probabilities with Supervised Learning.
Proceedings Of The 22nd International Confer-
ence On Machine Learning. pp. 625-632 (2005),
https://doi.org/10.1145/1102351.1102430

[20] OHLMAN, H. Subject-Word Letter Frequencies with
Applications to Superimposed Coding. Proceedings Of
The International Conference On Scientific Informa-
tion. (1959,12), https://doi.org/10.17226/10866

[21] Benford., F. The law of anomalous numbers.. (Proc. of
the American Philosophical Society,1938)

[22] Panse, F. & Naumann, F. Evaluation of Duplicate De-
tection Algorithms: From Quality Measures to Test
Data Generation. 2021 IEEE 37th International Con-
ference On Data Engineering (ICDE). pp. 2373-2376
(2021)

[23] Karl Pearson F.R.S. LIII. On lines and planes of clos-
est fit to systems of points in space. The London, Edin-
burgh, And Dublin Philosophical Magazine And Jour-
nal Of Science. 2, 559-572 (1901)

[24] Breiman, L. Random Forests. Machine Learning. 45,
5-32 (2001,10)

[25] Prokhorenkova, L., Gusev, G., Vorobev, A., Dorogush,
A. & Gulin, A. CatBoost: unbiased boosting with cate-
gorical features. (2019)

[26] Ke, G., Meng, Q., Finley, T., Wang, T., Chen, W., Ma,
W., Ye, Q. & Liu, T. LightGBM: A Highly Efficient
Gradient Boosting Decision Tree. Advances In Neural
Information Processing Systems. 30 (2017)

[27] Pennington, J., Socher, R. & Manning, C. GloVe:
Global Vectors for Word Representation. Proceedings
Of The 2014 Conference On Empirical Methods In Nat-
ural Language Processing (EMNLP). pp. 1532-1543
(2014,10)

[28] Le, Q. & Mikolov, T. Distributed Representations of
Sentences and Documents. Proceedings Of The 31st
International Conference On Machine Learning. 32,
1188-1196 (2014,6,22)

[29] Freund, Y. & Schapire, R. A Short Introduction to
Boosting. In Proceedings Of The Sixteenth Interna-
tional Joint Conference On Artificial Intelligence. pp.
1401-1406 (1999)

[30] Wolpert, D. Stacked generalization. Neural Networks.
5, 241-259 (1992)

[31] Chevallier, M., Boufares, F., Grozavu, N., Ro-
govschi, N. & Clairmont, C. Near duplicate

a machine learning ap-column identification:
proach. OnSeriesSymposiumIEEE2021

(SSCI)IntelligenceComputational (2021,12),.
https://doi.org/10.1109/ssci50451.2021.9659897

[32]

[33] Chevallier, M., Rogovschi, N., Boufarès, F., Grozavu,
N. & Clairmont, C. Detecting Near Duplicate
Dataset. Proceedings Of The 13th International
Conference On Soft Computing And Pattern
Recognition (SoCPaR 2021). pp. 394-403 (2022),
https://doi.org/10.1007/978-3-030-96302-6 36

[34] Arik, S. & Pfister, T. TabNet: Attentive Interpretable
Tabular Learning. (2020)

[35] Hulsebos, M., Hu, K., Bakker, M., Zgraggen, E.,
Satyanarayan, A., Kraska, T., Demiralp, Ç. & Hi-
dalgo, C. Sherlock: A Deep Learning Approach to Se-
mantic Data Type Detection. Proceedings Of The 25th
ACM SIGKDD International Conference On Knowl-
edge Discovery And Data Mining. pp. 1500-1508
(2019), https://doi.org/10.1145/3292500.3330993

[36] Christen, P. & Pudjijono, A. Accurate Synthetic Gen-
eration of Realistic Personal Information. Proceedings
Of The 13th Pacific-Asia Conference On Advances In
Knowledge Discovery And Data Mining. pp. 507-514
(2009), https://doi.org/10.1007/978-3-642-01307-2 47

[37] Christen, P. & Vatsalan, D. Flexible and Extensible
Generation and Corruption of Personal Data. Proceed-
ings Of The 22nd ACM International Conference On In-
formation & Knowledge Management. pp. 1165-1168
(2013), https://doi.org/10.1145/2505515.2507815

384

Detecting near duplicate dataset with machine learning

[38] Eid, H. & Abraham, A. Adaptive feature selection and
classification using modified whale optimization algo-
rithm. International Journal Of Computer Information
Systems And Industrial Management Applications. 10
pp. 174-182 (2018)

[39] Chotchantarakun, K. & Sornil, O. An Adaptive Multi-
levels Sequential Feature Selection. International Jour-
nal Of Computer Information Systems And Industrial
Management Applications. 13 pp. 10-19 (2021)

[40] Trung, H. Database Performance Evaluation and Appli-
cations of Data Science for IoT Platform Analysis In-
ternational Journal Of Computer Information Systems
And Industrial Management Applications. 13 pp. 124-
135 (2021)

Author Biographies

Marc Chevallier born in 1991 in
France has completed a master of Sci-
ence in Engineering at Sorbonne Uni-
versity, France in 2015 and a mas-
ter in innovation management at Sor-
bonne University, France in 2018. He
is currently doing his Ph.D. in com-
puter science within the LIPN labora-
tory at the Sorbonne Paris Nord Univer-
sity, France. He is also a member of the

company Synaltic which supports his work since 2018. His
main research topics focus on data profiling using machine
learning as well as feature selection using genetic algorithms.

Nicoleta Rogovschi born in 1983 in
Moldova received her Master of Com-
puter Science degree from Paris 13
University in 2006 in Machine Learn-
ing. She is currently an Associate
Professor in Computer Science at the
Paris Descartes University. She com-
pleted her Ph.D. in Computer Science
(Probabilistic Unsupervised Learning)

in 2009 in the Computer Science Laboratory of Paris 13 Uni-
versity and the HdR (Hability to direct researches) in 2021
at Sorbonne Paris Nord University. She’s research is with
the Data Mining (GFD) Team. Her research interests in-
clude Probabilistic Learning, Unsupervised Learning, Clus-
tering and Co-Clustering methods for different types of data
in different contextes : anonymization, recommender system,
opinion detection,... She is also a member of EGC, AFIA,
IEEE, INNS, INNS AML group. Nicoleta Rogovschi codi-
rected 5 PhD students and tens of Master Research students.

Faouzi Boufares is assistant professor
in computer science at Paris XIII Uni-
versity since 1990. He is a member of
the computer science laboratory of the
University of Paris Nord. His research
work, since his PhD thesis in 1986, has
focused on databases. The main topics
recently have been data profiling and

semantics to automatically detect and
correct anomalies in data when integrating heterogeneous
data. Data quality was the main objective to better support
decision making. His research interests are in data engineer-
ing and data science. He has directed several theses in the
field, which have led to several publications, namely on data
quality and deduplication. Recently, in his research team, the
principles of machine learning are used to serve data quality.
His teachings focused on the analysis and design of informa-
tion systems, databases and data warehouses, and decision
support systems.

Nistor Grozavu born in 1984 in
Moldova received his HdR degree from
Sorbonne Paris Nord University in
2020 and PhD degree in Unsupervised
Machine Learning in 2009 from Paris
13 University. He is currently Full
Professor in Computer Science at CY
Cergy Paris University. His research is
with the MIDI team from ETIS Labora-
tory. His research interests include Un-

supervised Learning, Transfer Learning, Dimensionality re-
duction, Collaborative Learning, Machine Learning by Ma-
trix Factorization and content-based information retrieval,
Quantum Machine Learning. These researches are applied
in different applications for text mining, visual information
retrieval, recommendation systems, fraud detection, etc. via
ANR, FUI, PEPS CNRS, AUF projects. He is also a member
of IEEE, INNS, and the co-founder of the INNS Autonomous
Machine Learning group. Nistor is the co-author of a patent
on visual information retrieval, published two book chapters,
12 peer-reviewed journal papers, and more than 40 interna-
tional conference papers. Nistor Grozavu co-supervised 2
post-doctorants, 8 PhD students and supervise each year 1-2
Master2 internship.

Charly Clairmont born in 1978 in
France has completed a Master in Com-
puter Science at University of Reims
Champagne Ardenne in 2000 and a
Master in Business Management at ISG
Paris in 2002. Co-Founder of Altic,
now Synaltic. Since 2004 it has partici-
pated actively in the promotion of Busi-
ness Intelligence in France, mainly in
the open source area with large meetup

groups like Hadoop User Group and Paris Spark Meetup.
Via Synaltic, he participated in various research projects in
paneuropean collaborations or with French Universities like
Sorbonne Paris Nord.

385

	Introduction
	Problem description
	Features
	Algorithms
	Experiments
	Influence of parameter
	Influence of the number of columns
	Evaluating multiple classifier
	Optimisation

	Results
	Influence of parameter
	Influence of the number of columns
	Evaluating multiple classifier
	Optimisations

	Conclusion

