
Journal of Information Assurance and Security.

ISSN 1554-1010 Volume 9 (2014) pp. 001-008

© MIR Labs, www.mirlabs.net/jias/index.html

MIR Labs, USA

Port Knocking with Single Packet Authentication

using Asymmetric Key Cryptography

Michael Reeves

Mike.reev0@yahoo.com

Abstract: Protecting services from attack is the sole purpose of

a firewall; however, some services (generally those for remote

administration) require enough leniencies in their rules that the

protection of a firewall is quite limited. Port Knocking is a

method which may helps protect against attack, by preventing

firewall responses to connection requests until appropriate

conditions are met, in the form of a knocking packet sequence. To

harden the security of Port Knocking further, asymmetric

cryptography can be used to reduce the number of knocking

packets to a single packet while also authenticating the individual

user.

Keywords: Port Knocking, Cryptography, Authentication,

Firewall, Security

I. Introduction

As reliance on computers and the Internet have increased over

the years, so too have cyber attacks. In order to combat these

attacks and protect against exploitation of vulnerabilities

within the technology so heavily relied upon, computer

security has become an essential component to networking and

system administration. A layered security approach, consisting

of security controls at various points through a network, has

been found most suitable to protect vital resources and

services, but in-turn adds complexity to the existing

infrastructure.

The network boundary is a critical point in the security of a

network’s infrastructure, as it is the first layer of defense. It is

standard practice to use a firewall to limit both inbound and

outbound traffic. By blocking traffic to services, the risk of

attack is mitigated since the service is inaccessible to those

who might exploit it. However, there are some cases in which

external access is necessary.

When allowing inbound traffic through a firewall, it is

prudent to restrict the traffic to only known-authorized sources.

Insufficiently restricted firewall filters result in potentially

giving an attacker the foothold they need to launch attacks. Yet,

there are some cases when the source information needed for

the firewall filter cannot be known in advance. For this reason

Port Knocking was created—to provide a mechanism for

dynamically generated one-to-one firewall rules.

II. Port Knocking

A. Port Knocking Overview

Port Knocking is a security mechanism first made famous by

Martin Krzywinski [1][2]. The objective of Port Knocking is

to allow firewall ports to be dynamically opened or closed

through the use of specifically crafted packets. A Port

Knocking scheme is only possible through the use of two

agents: the knocker and the listener. The listener resides on the

system with the protective firewall, traditionally using the

firewall logs as a means to listen for potential knocking traffic.

The knocker resides on the remote client and is the mechanism

to send the specifically crafted packs. Both the knocker and the

listener must already agree and understand the knocking

pattern.

 By definition, the knocking traffic is a covert channel—a

means of communication through a media outside its intended

use [3][4]. Covert channels can be seemingly anything in

which both communicating parties have access. For instance,

two parties wishing only to answer questions with either a

“yes” or a “no” may utilize the file-lock feature of a shared file.

If the file is in file-lock state the answer is “no,” whereas, if the

file is open for writing the answer is “yes.” As such, the

question may be asked in the open (accessible to prying eyes

and ears), but only those who know how to get the answer

understand the more critical portion of the communication.

 Port Knocking uses a similar communication system. A Port

Knocking configuration begins with the firewall set to deny all

inbound traffic [1][2]. However, this configuration also means

all services are cut off from the Internet—including to

authorized users. To finish the configuration, a sequence of

ports is decided upon, in which if the listener observes the port

sequence it will then open a pre-determined port. The knocker

is then configured for the same sequence.

An obvious use for Port Knocking is for securing remote

administration. Secure Shell (SSH), for instance, is a common

service used in remote administration, which is normally

bound to port 22. One could bind SSH to another port, but the

fact of the matter is that the protocol could easily be identified

simply by its response to a connection request [3]. Another

option for protecting a server running SSH is to create a

firewall rule which limits connections only from the IP

addresses known to be used by remote administrators.

 2

However, due to the dynamic nature of IP address issuance by

Internet Service Providers (ISP), it is not always possible to

know which IP address the administrator is using, so it may not

be possible to create a sufficiently restrictive firewall rule.

With Port Knocking, the SSH port can be blocked at the

firewall until the knocking client has sent the correct port

sequence. Likewise, another port sequence may be used to

covertly inform the listener that SSH port is no longer needed

and may be blocked by the firewall yet again.

B. Port Knocking Example

Pork Knocking can be configured to nearly any imaginable

configuration. To exemplify one possible configuration, we

will use the aforementioned securing of SSH. The sequence

we will employ is ports 43, 65,010, and 198 (as depicted in

Figure 1).

Figure 1. A Port sequence triggering listener to open port 22

 The firewall is configured to block all inbound traffic,

including ports 43, 198, and 65,010. Once the correct

sequence is blocked by the firewall, the listener acknowledges

that the knock sequence occurred and dynamically creates a

firewall rule which allows port 22 from the IP address that

generated the knocking sequence. Traditionally, a separate

knocking sequence is used to trigger the listener to remove the

previously created firewall rule; however, more advanced

listeners can be configured to remove the rule after a specified

time [5].

C. Port Knocking Downfalls

Like all security practices, Port Knocking is by no means

perfect. One well documented problem is the natural

unreliability of packet sequences. Each packet from a source

to a destination can take different routes, each potentially

traveling at different speeds. Though the speed differences for

each packet may be nanoseconds, the difference may be

enough to cause one packet to arrive before its former. If this

were to occur, though the knocker sent out the correct

sequence, the listener sees a different sequence (one that does

not match the configuration) and no change to the firewall

rules is made, as depicted in Figure 2.

Figure 2. An out of sequence port knock

 One simple way to mitigate the sequence issue is to use a

sequence consisting of only one knocking packet. The obvious

downfall of this approach is that it is less secure. Port

Knocking was developed to prevent against port scans from

uncovering open ports. The logic behind the practice is that it

is highly unlikely that a port scan, even one trying ports at

random, would stumble upon the correct sequence (and no

additional ports attempted during the sequence) [1][2].

Without the correct sequence, the port scan result would

find that no services are running, since all connection attempts

are blocked by the firewall. However, with only one port used

as the knocking sequence, the listener would create the new

firewall rule once the scan tries the knocking port; thus,

allowing the scanner access to the servicing port being

protected. In such a case, a port scan has a 50% chance of

scanning the knocking port before the servicing port; thereby,

exposing the protected service.

To reduce the likelihood of a port scan uncovering the

correct sequence, the number of ports in the sequence must be

increased. The obvious downfall to increasing the number of

ports is that it also increases the likelihood of one or more

packets arriving out of sequence.

The biggest issue plaguing Port Knocking is the fact that it

is simply an implementation of “security through obscurity” by

means of covert channels. Just like the covert channel example

previously mentioned (in which anyone with access to the

file-lock status and knowledge of its significance could in turn

understand the message) anyone who can observe the

knocking sequence can also replicate it for themselves. A

potential solution to this problem is with the employment of

cryptography [6][7][8][9]. With encrypted knocking packets,

sensitive information (such as port number and action) can be

protected against eavesdroppers. Encryption can even be used

to protect against replay attacks by including a timestamp and

the originator’s IP address.

Unfortunately, all previously proposed options utilize

symmetric cryptography which has security issues of its own.

Symmetric cryptography uses the same key for encryption and

decryption; thus, to read a symmetrically encrypted message

one must decrypt it with the same key which was used for

encrypting [10][11]. The process is mathematically

represented as follows:

  mE KDKm 

Port Knocking with Single Packet Authentication using Asymmetric Key Cryptography 3

Using Port Knocking with symmetric encryption, at a

minimum two systems must have the key: the knocker and the

listener [9][10][11]. They both inherently can encrypt and

decrypt the message since both transactions use the same key.

Because the listener is configured to use the key for decryption,

each knocker must be issued the same key. For this reason, all

implementations of Port Knocking with symmetric

cryptography is not a form of authentication, but rather it is

authorization (the belief that if the payload is encrypted with

the appropriate key, the knocker must be in the circle of trust

and, therefore authorized access to the service port).

 Several weaknesses exist with symmetric encryption; most

notably key issuance [10]. Because every system requires the

same key, there must be a means to distribute the key.

Distribution can be achieved in a multitude of ways:

sneaker-net, on a controlled network, over the internet through

a VPN, etc. All methods have no means of limiting the number

of keys created and no means to ensure that once a key is

delivered to a knocking agent it is not further distributed. This

lack of control is the reason Pork Knocking with symmetric

cryptography is authorization-based—the assumption the key

has not been provided to unauthorized parties.

 Other issues with symmetric cryptography are far more

technical than key distribution; pertaining more to the

strengths and weaknesses of the protocols in play. The size of

the encryption key, for instance, plays a significant role in the

security of an encryption algorithm [10][11]. An algorithm’s

key size (or “key space”) is the number of bits used for the key,

which in-turn determines the total number of keys that are

possible. A 64-bit key has 18,446,744,073,709,551,616

possible values; however, with systems able to try millions per

second, finding the correct key is only a matter of time.

Symmetric cryptography uses small keys in order minimize

the computational time of the encryption/decryption process

[10][11]. There is, however, a threshold where key space is

simply too small because computers can be used to attempt

every possible key until the correct one is uncovered (referred

to as a brute-force attack). The Data Encryption Standard

(DES) is one example of a symmetric encryption algorithm

whose key size can be uncovered through a brute-force attack

within a reasonable period time [12].

 Key size is not the only factor when determining if a

symmetric encryption algorithm is secure. Not all encryption

algorithms are equal. The mathematical principles behind the

algorithms must be sound for it to withstand

cryptanalysis—the process of uncovering the key by means

other than brute-force attacks [10]. Microsoft’s LanMan

hashing algorithm and NSA’s Skipjack algorithm both have

fallen victim to cryptanalysis [10][12][13]. For these reasons

the Advanced Encryption Standard (AES) has been suggested

as an appropriate encryption algorithm, being both

mathematically sound and supporting sufficient key sizes [11].

Even with using AES, potential problems still remain. Any

symmetric encryption algorithm is susceptible to cryptanalysis

if the message being encrypted is smaller in size than the

encryption key since the message is a variable of the

encryption process [10]. A message shorter than the key size

will result in an encrypted output (called the “ciphertext”) that

lacks randomness, allowing some of the key’s bits to be

inferred. To mitigate this risk a predetermined random

variable (known as a “salt”) may be used to add randomness to

the message, but the same salt value must be configured on the

listener and all the knockers.

One final concern of symmetric cryptography is

susceptibility to known-plaintext attack [10]. This attack

requires knowledge of the message being encrypted and the

ability to see the ciphertext. Because one employing Port

Knocking would be concerned with network eavesdroppers,

this attack warrants interest. While a “salt” does mitigate a

known-plaintext attack to an extent, if a cryptanalyst is aware

of what the message should contain, he can in-turn use that

information to analyze how the message was altered by the key.

Just as having a message with insufficient length lacks in

randomness, so too does a message with predictable input.

By observing the knocking packet(s) and subsequently

opened port (identified by the next established connection), an

attacker can gather the information he needs for a

known-plaintext attack [10][14]. Furthermore, adhering to a

known standard solidifies the placement of the data within the

message, allowing the attacker to focus his cryptanalysis on

the predictable portion. While known-plaintext attacks and

insufficient message lengths do not reveal the entirety of a

symmetric key, they reduce the time needed for a brute-force

attack by a factor of two for each inferred bit of the key.

III. Single Packet Authentication with

Asymmetric Cryptography

A. Asymmetric Cryptography

1) Overview

Unlike symmetric cryptography, which uses only one key for

both the encryption and decryption processes, asymmetric

cryptography uses two distinct (yet related) keys [10][11]. The

two keys serve different roles. One of the keys, referred to as

the “private key,” is solely possessed by the owner of the key.

If the private key is compromised, all security to be gained

from the encryption process is lost [10]. The other key,

however, is by design available to the public (and thus known

as the “public key”).

 Where the security of symmetric keys lies in the

randomness created by their algorithms, asymmetric

cryptography gets its strength through complex computations

[10]. Though each algorithm is different, the theory behind

any asymmetric algorithm is that the complex computations

are too difficult to calculate within a reasonable period of time

without both key pairs. By knowing the key pairs, their

relationship can be determined, greatly simplifying the

calculation.

Where symmetric algorithms can typically be proven and/or

disproven to be mathematically sound, asymmetric algorithms

rely on the belief that the complex computations cannot be

solved using a simpler formula [10]. While it is difficult to

prove that there is a way to simplify the complex calculations

(which would deem the algorithm insecure), it is impossible to

prove that there isn’t. In fact, it is always possible that a

mathematically finding may cause an asymmetric algorithm to

suddenly hold no merit [15].

 4

 The sound mathematics in symmetric key cryptography is

what allows for such smaller key size [10]. Asymmetric

cryptography does not reap the same benefit [10][11]. Because

asymmetric cryptography relies on the difficulty of complex

mathematics regarding the relationship of the two keys, it

in-turn requires very large keys—generally at least 10 times

the key size of its symmetric counterpart. One reason for the

greater key size is the fact that not every key pair has a

mathematical relationship. For instance, an algorithm which

uses prime numbers in its computation cannot have a key that

is divisible by anything other than itself and one.

Using only 6 bits, a symmetric algorithm would allow for 64

keys to choose from, but of those 64 possible keys only 19 are

prime numbers. Of those 19 keys, there are sure to be pairs

which simply do not have a mathematical relationship in the

asymmetric algorithm. A smaller key size means less possible

matching key pairs, and therefore, brute-force attacking every

possible matching private key becomes less cumbersome than

the complex computation the algorithm uses for its security

[10].

The previously stated weakness of symmetric cryptography

relating the message size to the key size does not exist in

asymmetric cryptography [10]. This weakness exists in

symmetric cryptography because of its procedural

nature—ciphering/deciphering occurs in a particular sequence

using the key as a variable. Because asymmetric cryptography

is not based on a procedure but rather a relationship between

two keys, the message size cannot be used to reveal any bits of

the private key. The trade-off, however, is that asymmetric

cryptography is significantly more taxing on the system than

symmetric. Because encrypting/decrypting with an

asymmetric algorithm is more taxing, it is not recommended

for large messages.

 The benefits of asymmetric cryptography lie in the fact that

only one person has the private key [10][11]. Because anyone

potentially has access to the public key, then anyone can

encrypt a message using it. An encrypted message can only be

decrypted by the owner of the corresponding private key.

Using K for the private key and P for the public key, an

asymmetric algorithm can be mathematically expressed as

follows:

  mEPDKm 

 On the surface, not much seems different between

asymmetric and symmetric cryptography. However, where

symmetric cryptography only protects for integrity,

confidentiality is additionally enforced through asymmetric

cryptography [10][11]. Some may argue that symmetric

cryptography has a degree of confidentiality; although, the

level of confidentiality would be limited to those individuals

who have the encryption key (which at a minimum are two: the

knocker and the listener). Conversely, asymmetric

cryptography ensures confidentiality down to the individual.

2) Other Capabilities

The real power with asymmetric cryptography occurs when

the sequence is reversed. An individual encrypting their

message with their private key enables anyone with the public

key (potentially anyone in the world) to read the message.

Attempting to tamper with the encrypted message or

encrypting with a key other than the private key results in the

message being corrupted during decryption [10]. If the

message is successfully decrypted it must have been encrypted

with the corresponding private key, and therefore originating

from its owner. This inverse use of an asymmetric algorithm is

expressed as follows:

  mEKDPm 

Because only one individual has the private key, they

personally must have been the one who encrypted the message

[10][11].

Encrypting a message with one’s private key is a digital

signature; however, tradition digital signatures use a similar

but slightly more complex application of this approach

[10][11]. As mentioned before, asymmetric cryptography is

more taxing on a system than symmetric cryptography;

therefore, most files are too large to be encrypted in whole. In

order to reduce the burden of the encryption/decryption

process, traditional digital signatures use the hash value of the

file as the message, rather than the original file itself. Through

this implementation, the digital signature validates the identity

of who signed it; whereas, the hash value validates the integrity

of the file.

 A successful decryption only proves that the keys are a

legitimate pair. The proof that the owner of the private key is

whom they claim to be is another matter. The acceptance of a

key pair’s owner is largely based on trust. Anyone can create

their own asymmetric key pair, claiming to be someone they

are not. Whether or not one believes them can be determined

by who created the key.

 Trustworthy asymmetric keys are generated by a Certificate

Authority (CA) [10][11]. In addition to creating the keys, the

CA also creates a digital certificate; consisting of the public

key and the CA’s information. The certificate is digitally

signed by the CA to prove its authenticity.

The security scheme is quite simple: if one trusts the CA,

then they can implicitly trust the public key. If there is no

reason to trust the CA, then there is no reason to trust the

claimed identity of the certificate (or key pair) they create [10].

Several CAs exist for the sole purpose of issuing certificates

which are considered trustworthy. These trusted CAs require

applicants to go through a painstaking process to validate the

applicant’s identity before issuing their certificate.

Additionally, the CAs are responsible for issuing certificate

revocations in the event a private key is compromised. Lastly,

CAs may keep a copy of the private key for key escrow.

 Rather than pay for the creation of certificates, networks

which want to exclusively use asymmetric key pairs in-house

can stand up their own CA. By doing so, each certificate is

trusted by its network peers since the CA is locally housed and

controlled. Trying to us the certificate outside the network is

possible; however, it would likely be ineffective as those

outside the network have no reason to trust the CA.

B. Single Packet Authorization

Port Knocking with Single Packet Authorization was first

proposed by Michael Rash [8]. The methodology is simple: a

single packet contains the user’s information (e.g. username

and password), local timestamp, action requested (open/close

and port number), and a salt. This information as a whole is

used to create a hash value. All of this data, including the hash

Port Knocking with Single Packet Authentication using Asymmetric Key Cryptography 5

value, is encrypted with the symmetric key and used as the

packet payload.

 This system works off the assumption that the symmetric

key has not been compromised, either during key distribution

or by cryptanalysis. Of course if the key was compromised,

then all of the content could be easily changed, making the

hash value (contained in the payload) moot to that regard. If

the key is not compromised then the hash value and the

information used to create it is rendered unreadable to an

eavesdropper.

 Working with the assumption that they key is not

compromised, the listener takes the provided plaintext

information and generates a hash value using the same hashing

algorithm [8]. If the hash values match, then the payload is

likely to not have been altered, and the firewall change is made.

If the hash value does not match, then no change is made.

 As mentioned before, this method only provides

authorization since there is no authentication process in place

[8][9]. While a user’s information can be passed along this

way, anyone with access to the symmetric key may view this

information; thus, the confidentiality of the user’s information

is limited to the circle of trust associated to the symmetric key.

To exemplify this, suppose Alice produces her information via

single packet authorization while Bob eavesdrops on the

traffic. Because Bob is in the circle of trust, and therefore also

has the symmetric key, he is able to decrypt and read Alice’s

information. Bob can then send his own knocking packet with

the newly acquired information about Alice. Because the same

key is used, as far as the listener is aware Alice is the one

requesting access. Both Alice and Bob are authorized to knock

and make these changes, but nothing validated that Bob is who

he claims to be.

C. Port Knocking using Single Packet Authentication

In February of 2013, I initially proposed the possibility of

hardening Port Knocking with asymmetric-cryptography

based authentication, which became the basis of this work [16].

Asymmetric cryptography ties a private key to a single owner;

thus, authentication is a capability that symmetric

cryptography does not have. By utilizing the private key to

encrypt data one can ensure the data originated from the owner

of the private key. Using the aforementioned example, if Bob

encrypted Alice’s information with his private key, the listener

would know that Bob was the one making the request even

though the payload contains Alice’s information. Two

methods can determine if this has occurred: 1) decrypting the

data with Alice’s public key or 2) decrypting the data using

Bob’s public key. If the listener attempts to decrypt with

Alice’s public key, the message will be corrupted and

unreadable. If the listener decrypts with Bob’s public key, the

message will be intact and prove that Bob is the actual sender.

 In order for a single packet to be used for authentication, all

pertinent data must be able to be encapsulated in the packet’s

maximum transmission unit (MTU). The MTU is the

maximum amount of data which can be used as packet payload,

as defined by the protocol. Exceeding the MTU will result in

the data being broken up into multiple packets or outright

truncated. In addition, because all packet content is readable

(due to the availability of the public key), measures must be

made to protect against attack.

 A replay attack is one where an eavesdropper records the

packet and launches it again at a later time [9]. One measure

against a replay attack is to use a timestamp. By synchronizing

with the same Network Time Protocol (NTP) server, the

knocker and the listener will have the same system clock time

(within fractions of a second) [8]. By providing a plaintext

timestamp and an encrypted version of the timestamp, one can

ensure that the timestamp was not altered; however, it does not

prove the packet has been replayed. Since NTP keeps the

knocker’s and the listener’s clocks synchronized, a margin of

error can be used to minimize the effects of a replay attack.

 The difference between the timestamp on the packet and the

current time is the packet’s latency. This latency can be used to

detour replay attacks. A maximum latency tolerance of two

seconds, for example, would provide ample headway for

bandwidth issues while minimizing susceptibility of a replay

attack. There is still the possibility of a replay attack occurring

in the two second window.

 By adding the IP address in conjunction to the timestamp,

replay attacks are virtually impossible. If the IP address in the

packet header does not match the encrypted IP address in the

payload, then the packet must be a replay attack. Because no

two systems can have the same IP address at the same time, the

only way to defeat this approach is for an attacker to position

himself between the knocker and the listener (known as a

man-in-the-middle), at which time other attacks can be

launched.

Network Address Translation (NAT), however, can cause

two systems to appear (to the receiver) to have the same IP

address [9]. NAT is used to allow systems in a Local Area

Network to use one publicly routable IP address. NAT is used

in most networks today. As such, a replay attacker and a

knocker on the same NAT-enabled network would appear to

be the same system from the listener’s perspective.

 NAT can cause several issues with single-packet

authentication. In order for the IP address in the header and

encrypted version in the payload to match, the knocker must be

aware that they are being NAT’d [9]. The public IP address

must be used when creating the encrypted payload, which

means the knocker must be able to be configured to encrypt a

specified IP address. Michael Rash’s single packet

authorization aims at addressing the NAT problem by not

including the IP address; however, as a result Rash’s method is

prone to replay attacks [8].

 Another security concern is firewall rule piggy-backing. By

observing a Port Knocking sequence of any kind, one can infer

what port is being opened. Once observed, on subsequent Port

Knocking transactions an eavesdropper on the same NAT’d

network can send their own packet to the opened port and gain

access to the newly opened firewall rule. To protect against

rule piggy-backing, the latency of the packet can be used to

automatically close the opened port. For instance, a rule can be

made to open a port automatically (closing it after twice the

length of time as the packet latency). Of course, currently open

sessions must be preserved beyond the packet latency.

 Where single packet authorization has a means of relaying

the port number and action (open/close), it is not

recommended to do so with this method. With single packet

 6

authorization, the data is encrypted and only those with the key

may decrypt the message to see the port number. With single

packet authentication using asymmetric keys, all of the

packet’s content may be read by any potential eavesdropper.

Therefore, revealing the port provides eavesdroppers

information that could assist them in a

time-of-request/time-of-use attack.

 A time-of-request/time-of-use attack takes advantage of the

gap between the time a resource is requested vice when it is

actually used. In our case, a time-of-request/time-of-use attack

gap is the time between when the knocking packet is received

(in turn, changing the firewall rules) and when the firewall rule

is actually used. The listener acknowledges the knock by

allowing the next connection to the protected service within

the threshold time. The rule is dynamically created and only

allows traffic from the IP address referenced in the knocking

packet.

 As mentioned before, all traffic from systems on a network

utilizing NAT will seem to be coming from the same publicly

routable IP address. Working with the assumption that the port

and action are contained in the knocking packet, and the

knocker is on such a network, any other system which can see

the knocking packet can in-turn craft its own connection

attempt, effectively beating the knocking system to the punch.

NAT is not the only concern with

time-of-request/time-of-use attacks. Any system in which all

traffic between the knocker and the listener must flow can

conduct its own attacks. Because this man-in-the-middle

system can actually interfere with all the traffic, it could allow

the knocking packet to flow as intended, but subsequently drop

the knocker’s connection attempt to the protected service.

Obviously doing so can easily create a denial-of-service attack,

but it also enables the man-in-the-middle to launch its own

connection to the protected service.

By keeping the port out of the knocking packet’s contents, a

NAT time-of-request/time-of-use attack is mitigated. All

implementations of Port Knocking are susceptible to

man-in-the-middle attacks since the man-in-the-middle system

can spoof the knocker’s IP address, knowing that reply packets

must be routed through it. In such a case, because all traffic

must be routed through the man-in-the-middle, it is able to

maintain connections without the interaction of the knocking

system. Since the man-in-the-middle can also drop any packets

it wishes, it can prevent the knocker and listener from being

able to communicate, and neither party is aware that the

man-in-the-middle attack is even occurring.

Like more traditional port-knocking schemes, single-packet

authentication must rely on some form of covert channels to

convey the port to be opened. The most secure means is

through the port used in the knocking sequence. Using a

pre-configured setting, both the knocker and the listener know

which knocking port corresponds to which port to open. By

allowing only a single connection per knock, the action is

always to open the port, and upon connection or timeout

threshold (whichever occurs first), the port is closed. Since this

transcription method is easily detected by an eavesdropper,

another covert channel is possible through the timestamp. The

milliseconds of the timestamp can be used for a similar

transcription scheme. Doing so would require a larger timeout

threshold since latency cannot be calculated as accurately as

when the milliseconds are not used in a transcription scheme.

IV. Proof of Concept

The basis of this work is derived from a blog post I wrote in

February of 2013, where I outlined the possibility of utilizing

asynchronous keys with Port Knocking for identification

purposes [16]. In an attempt to test Port Knocking with single

packet authentication for practicality I conducted a series of

experiments. The experiments were mock-ups of a single

packet knock consisting of a signature and sender’s certificate.

For the experiment, the knocking system and the listening

system were geographically separated using the Internet cloud

as the infrastructure. In addition, the knocker was behind a

NAT device.

As mentioned previously, an attacker could exploit the

vulnerability NAT creates and conduct their replay attack from

within the same NAT’d network within the two second

window. For this reason, my experiments used the IP address,

TCP sequence numbers (both listed in the packet header), and

timestamps as the plaintext message encrypted with the private

key (thus creating a digital signature). Though the

experimental system was never configured to this constraint,

the intent is that only the first unique packet would be

acknowledged, as the chances of the same sequence number

being used in two connections originating from the same IP

address with the same timestamp are astronomical. By doing

so, replay attacks are thwarted.

As described earlier, the signature included in the packet’s

payload consists of the IP address, the TCP sequence number,

and a UNIX timestamp including the milliseconds (as depicted

in Figure 3).

Figure 3. Single Packet Authentication packet contents.

The three data fields are then encrypted using the sender’s

private key, creating a signature. The remainder of the

packet’s payload consists of the sender’s certificate

(containing both their public key and the information about the

Certificate Authority which issues the key pair).

A. Creation of Keys and Certificates

To remain in line with common practices on the internet, I

decided on using the RSA asymmetric encryption algorithm. A

script was created leveraging OpenSSL to generate 100 key

pairs, along with a corresponding certificate and signature

mockup. In the creation of the signatures, rather than

generating them on-the-fly using the packet details (as

specified above), the signature was created using mock data

consisting of the UNIX timestamp in milliseconds and an

ASCII string the same size as the IP address and sequence

number. Upon experimentation, it was determined that there is

no physical size difference for a signature using IPv4 data vice

IPv6 data, as the size was the same in either case. An example

of the script is seen in Figure 4.

Port Knocking with Single Packet Authentication using Asymmetric Key Cryptography 7

Figure 4. Script generating RSA keys, certificates, signatures,

and payload.

 Line 6 of the script depicted in Figure 3 generates 1024 bit

keys. Adjusting that line allowed for various experiments

using different key sizes as the only variable. Line 8 uses a file

named input.txt in order to respond to the certificate

generation process, answering the questions such as location,

country, name, and email address. The signature is created in

line 12 and validated against the plaintext in line 18.

Modern practices for asymmetric key size are generally

1024 bits or more, with the current recommended size being

2048 bit. These experiments tested several key sizes to

determine their impact on the signature size they each create as

well as the digital certificate, as shown is Table 1.

Key Size Signature Certificate Total Payload

1024 bits 128 bytes 1188 bytes 1316 bytes

2048 bits 256 bytes 1541 bytes 1797 bytes

3072 bits 384 bytes 1887 bytes 2271 bytes

Table 1. Single Packet Authentication signature contents.

To ensure the validity of the data in Table 2, keys were

created on several systems at various times between February

and October 2013. While 2048 and 3072 bit keys required

actual values in the input.txt file, 1024 bit keys could be

created with NULL values; however, it created certificates of

1379 bytes making the payload 1507. These certificates,

unlikely in actual application, later proved to not be optimum

in the experimentation.

B. Testing the Listener Trigger

In order to test the listener, I first needed the ability to send

specially crafted packets to the listener. For this, I used

Hping3—a packet generator and analyzer. Hping3 is a

command-line open-source program which can create packets

using a wide variety of options [14]. Pertinent to the

experiments are the options to specify destination, packet

count, port, packet size, and payload, as depicted below in

Figure 5.

Figure 5. Hping3 example syntax.

Like a traditional knocking packet, the packet depicted in

Figure 4 was crafted as a TCP SYN packet, which would seem

to be a connection attempt to any eavesdropper. The

destination port was 78, using TCP as the default protocol.

Only one packet was sent, consisting of the contents of the

payload.txt file.

It is important to note that while one packet was sent, none

were received. The reason there was no acknowledgement

packet was because of a firewall rule set to block all ports. The

next step was to validate that the packet was complete in its

entirety, by capturing inbound traffic on the listener. A copy of

the captured packet payload received by the listener appears as

follows:

E....\..7...D2.w.B...0....rR"...P.......5...2D1..}.
...GhE.Y...*...t..1..>..._.g.7...,[.D...w.8.0..*.).
....EG.=d.N.{=p....>w..}.y..U..K...wp..q.....H.H.D.
.......k...l?.<-----BEGIN.CERTIFICATE-----.MIICtjCC
Ah+gAwIBAgIJAI0BLpsrpVBJMA0GCSqGSIb3DQEBBQUAMHQxCzA
JBgNV.BAYTAlVTMQswCQYDVQQIDAJJTDENMAsGA1UEBwwEVGVzd
DENMAsGA1UECgwEVGVz.dDENMAsGA1UECwwEVGVzdDENMAsGA1U
EAwwEVGVzdDEcMBoGCSqGSIb3DQEJARYN.dGVzdEB0ZXN0LmNvb
TAeFw0xMzEwMDYyMTE0MjNaFw0xNDEwMDYyMTE0MjNaMHQx.CzA
JBgNVBAYTAlVTMQswCQYDVQQIDAJJTDENMAsGA1UEBwwEVGVzdD
ENMAsGA1UE.CgwEVGVzdDENMAsGA1UECwwEVGVzdDENMAsGA1UE
AwwEVGVzdDEcMBoGCSqGSIb3.DQEJARYNdGVzdEB0ZXN0LmNvbT
CBnzANBgkqhkiG9w0BAQEFAAOBjQAwgYkCgYEA.6AsT9VRsySJW
nlgwQrFF8ZUMxgXmqWgwDyVkSCtxrZ7ULIf2o55M5B/VnRE5LB4
g.1u0oHIqAbH/OcBW+9scBpm69m3nT7QutSlGLnWuP2OyAScRbl
D9z6ffCZC1GfbOS.CRcpLtGaREQnwkcfAXGrzgDNhZ2rzS2g8lL
dRr78MesCAwEAAaNQME4wHQYDVR0O.BBYEFFCN9I+4ppgjBQkIq
k5B/o/Yw8P+MB8GA1UdIwQYMBaAFFCN9I+4ppgjBQkI.qk5B/o/
Yw8P+MAwGA1UdEwQFMAMBAf8wDQYJKoZIhvcNAQEFBQADgYEAZP
S9OTB/.3XXXahLITLHfmMloQh8X40WzdkJof4ObLToub/Hl06+y
QECshPGKHJC2bZLd0tQp.xLkvK8sQEDJZNZij5PPO+6iYj571jT
fBrJH7ZpWtMzk3RtSyzZeH0uJEjHxZuWbz.S58IoLvlv84GxZfK
O2iyuMDCVsaxsUEpDGA=.-----END.CERTIFICATE-----.....
...
...
...
...
...
..

 The captured packet contained the entire payload, with null

value after the certificate (represented with a “.”). All data

prior to the certificate is the signature, consisting of the

encrypted timestamp, source IP, and sequence number

placeholders. The signature and the certificate itself can easily

be extracted from the packet using regular expressions parsing.

Therefore, the packet contains all the information necessary

for the listener to be triggered.

C. Findings

Though a success, the proof-of-concept experiments shed light

to some hurdles which need to be overcome in implementation.

Upon experimentation, it was discovered that 1500 bytes was

the maximum packet size which was able to be transmitted, as

it is the MTU of Ethernet (the Data-Link layer protocol for

both the knocker and the listener). Though TCP’s MTU limit

accommodates for any of the tested key sizes, truncation

occurred on the packets larger than the Data-Link MTU. The

only certificates which were small enough to fit inside the

constraints of Ethernet were 1024 bit keys, which are quickly

being replaced by the 2048 bit key standards in practical use.

 It is possible to overcome the Ethernet MTU limit by

including the signer’s public key rather than the certificate.

Like the certificate, the public key can be easily parsed since it

contains a similar preceding and tailing identifier string. Most

importantly, the public key for a 3072 bit key can easily fit in

the MTU of Ethernet. The downfall for this approach is quite

obvious: trust is established by the digital certificate and it’s

CA. However, since a port-knocking deployment is intended

for members of a selected group, they would all pull from the

same CA.

 8

By using an in-house CA, the listener would be able to

cross-reference the public key with keys that have been issued

by the CA. Since it is highly unlikely that two members have

been issued the same public key, the certificate will likely be

found. However, querying the CA for key information may be

too time-consuming for Port Knocking uses. Alternatively, the

listener can be configured with the certificates of its knockers

locally, resulting in faster cross-referencing. These approaches

becomes more flawed as the number of created keys increases

since the likelihood of two certificates using the same public

key also increases. Therefore, it is recommended to only use

this approach for smaller networks which require fewer keys to

be generated and thus cross-referenced.

 The experiments also proved that the standard firewall log

levels cannot be used to extract the contents of a packet. Two

possible approaches compensate for this issue. The first

approach would be to modify the firewall logs to include the

payload of blocked traffic. Doing so, however, could cause

substantially larger logs generated during a port scan or similar

network attacks occurs. It is possible to streamline the logging

process, minimizing the amount of denied traffic while still

maintaining a longer history of potentially more relevant logs.

Another approach is to build the listener into the firewall

itself. By building the listener into the firewall, the time delay

between packet reception, analysis, and rule-modification is

optimized. However, this would in-turn provide a mechanism

for the firewall to modify its own rule, which potentially create

other security issues.

V. Future Work

Where there are several Port Knocking suites available, this

experiment utilized shell scripts rather actual applications. It is

quite feasible to either incorporate this implementation into an

existing Port Knocking suite or develop a solution from

scratch [5][8]. A live program operating in memory is sure to

prove more responsive than simple scripts.

The limiting factor in the experiment was the use of

Ethernet as the Data-Link protocol. Other protocols exist

which allow for a higher MTU; but, currently Ethernet is the

de facto Data-Link protocol. As technology changes, it is

possible that another protocol will become common; one

which allows for a larger MTU.

As mentioned previously, RSA was used in this experiment

because of its widespread use on the Internet. Elliptic Curve

Cryptography (ECC) is an asymmetric algorithm which has

significantly smaller certificate [16]. It is possible that much

stronger ECC keys may be used in lieu of RSA while still

fitting within the Ethernet MTU limitation.

 Though the proof-of-concept test used TCP, it is possible to

implement Port Knocking with single packet authentication

relying upon any IP-based protocol. UDP, for instance, can

conserve 12 bytes for additional payload content; however, the

use of sequence number is a TCP-specific implementation.

References

[1] M. Krzywinnski. “Port Knocking — Network

Authentication Across Closed Ports”, Sys Admin, XII (6),

pp. 12-17, 2003.

[2] M. Krzywinski. “Port Knocking”, Linux Journal, pp 1-3,

2003. [online]

[3] D. Isabel. “Port Knocking: Beyond the Basics”, SANS

Institute InfoSec Reading Room, SANS Institute, 2005.

[4] C. Pfleeger, S. Pfleeger. Security in Computing, Prentice

Hall, Upper Saddle River, pp. 151-160, 2006.

[5] M. Krzywinski. “Port Knocking from the Inside Out”,

PortKnocking.org, 2005. [online]

[6] S. Miklosovic. “Port Knocking Enhancements”. Masaryk

University, Kamenice, Czech Republic, 2011.

[7] R. DeGraaf, J. Aycock, M. Jacobson Jr. “Improved Port

Knocking with Strong Authentication”. University of

Calgary, Calgary, Canada, 2005.

[8] M. Rash. “Single Packet Authorization with FwKnop”.

Cyberdyne.org, 2005. [online]

[9] S. Jeanquier. “An Analysis of Port Knocking and Single

Packet Authorization”. Royal Holloway College,

University of London, London, United Kingdom, 2006.

[10] B. Schneier. Applied Cryptography, John Wiley & Sons,

Inc., New York, 1996.

[11] E. Maiwald. Network Security: A Beginner’s Guide,

McGraw Hill, New York, pp. 253-265, 2013.

[12] S. Anson, S. Bunting. Mastering Windows Network

Forensics and Investigation, Wiley Publishing, Inc.,

Indianapolis, pp.79-87, 2007.

[13] J. Kim, R. Phan. “Advanced Differential-style

Cryptanalysis of the NSA’s Skipjack Block Cipher”,

Cryptologia, XXXIII (3), pp. 246-270, 2009.

[14] S. Davidoff, J. Ham. Network Forensics, Prentice Hall,

Upper Saddle River, pp.430-438, 2012.

[15] T. Simonite. “Math Advances Raise the Prospect of an

Internet Security Crisis”, MIT Technology Review, pp. 1,

2013. [online] Available from:

http://www.technologyreview.com/news/517781/math-a

dvances-raise-the-prospect-of-an-internet-security-crisis

/

[16] M. Reeves. “Knock, Knock…”, Secureeves.com, pp. 1,

2013. [online] Available from:

http://www.secureeves.com/blog.php?id=40

[17] T. Rosati, G. Zaverucha. “Elliptic Curve Certificates and

Signatures for NFC Signature Records”, Research in

Motion, Certicom Research, pp. 10, 2011.

Author Biography

Michael Reeves Born in Greenbay, Wisconsin, Michael

has worked professionally in the Computer Security field

for over 10 years. In 2011, he earned a Master’s of Science

degree in Information Technology (with a specialization in

Information Assurance) from the University of Maryland

University College, located at Adelphi, Maryland.

Previously, in 2008 Michael received a Bachelor’s of

Science in Management of Computer Information Systems

from Park University, located at Parkville, Missouri. In

addition he holds CISSP, A+, Network+, Security+, and

Linux+ certifications.

