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Abstract: Protecting services from attack is the sole purpose of 

a firewall; however, some services (generally those for remote 

administration) require enough leniencies in their rules that the 

protection of a firewall is quite limited. Port Knocking is a 

method which may helps protect against attack, by preventing 

firewall responses to connection requests until appropriate 

conditions are met, in the form of a knocking packet sequence. To 

harden the security of Port Knocking further, asymmetric 

cryptography can be used to reduce the number of knocking 

packets to a single packet while also authenticating the individual 

user. 
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I. Introduction 

As reliance on computers and the Internet have increased over 

the years, so too have cyber attacks. In order to combat these 

attacks and protect against exploitation of vulnerabilities 

within the technology so heavily relied upon, computer 

security has become an essential component to networking and 

system administration. A layered security approach, consisting 

of security controls at various points through a network, has 

been found most suitable to protect vital resources and 

services, but in-turn adds complexity to the existing 

infrastructure. 

The network boundary is a critical point in the security of a 

network’s infrastructure, as it is the first layer of defense. It is 

standard practice to use a firewall to limit both inbound and 

outbound traffic. By blocking traffic to services, the risk of 

attack is mitigated since the service is inaccessible to those 

who might exploit it. However, there are some cases in which 

external access is necessary.  

When allowing inbound traffic through a firewall, it is 

prudent to restrict the traffic to only known-authorized sources. 

Insufficiently restricted firewall filters result in potentially 

giving an attacker the foothold they need to launch attacks. Yet, 

there are some cases when the source information needed for 

the firewall filter cannot be known in advance. For this reason 

Port Knocking was created—to provide a mechanism for 

dynamically generated one-to-one firewall rules.  

II. Port Knocking 

A. Port Knocking Overview 

Port Knocking is a security mechanism first made famous by 

Martin Krzywinski [1][2]. The objective of Port Knocking is 

to allow firewall ports to be dynamically opened or closed 

through the use of specifically crafted packets. A Port 

Knocking scheme is only possible through the use of two 

agents: the knocker and the listener. The listener resides on the 

system with the protective firewall, traditionally using the 

firewall logs as a means to listen for potential knocking traffic. 

The knocker resides on the remote client and is the mechanism 

to send the specifically crafted packs. Both the knocker and the 

listener must already agree and understand the knocking 

pattern. 

 By definition, the knocking traffic is a covert channel—a 

means of communication through a media outside its intended 

use [3][4]. Covert channels can be seemingly anything in 

which both communicating parties have access. For instance, 

two parties wishing only to answer questions with either a 

“yes” or a “no” may utilize the file-lock feature of a shared file. 

If the file is in file-lock state the answer is “no,” whereas, if the 

file is open for writing the answer is “yes.” As such, the 

question may be asked in the open (accessible to prying eyes 

and ears), but only those who know how to get the answer 

understand the more critical portion of the communication. 

 Port Knocking uses a similar communication system. A Port 

Knocking configuration begins with the firewall set to deny all 

inbound traffic [1][2]. However, this configuration also means 

all services are cut off from the Internet—including to 

authorized users. To finish the configuration, a sequence of 

ports is decided upon, in which if the listener observes the port 

sequence it will then open a pre-determined port. The knocker 

is then configured for the same sequence. 

An obvious use for Port Knocking is for securing remote 

administration. Secure Shell (SSH), for instance, is a common 

service used in remote administration, which is normally 

bound to port 22. One could bind SSH to another port, but the 

fact of the matter is that the protocol could easily be identified 

simply by its response to a connection request [3]. Another 

option for protecting a server running SSH is to create a 

firewall rule which limits connections only from the IP 

addresses known to be used by remote administrators. 



 2 

However, due to the dynamic nature of IP address issuance by 

Internet Service Providers (ISP), it is not always possible to 

know which IP address the administrator is using, so it may not 

be possible to create a sufficiently restrictive firewall rule. 

With Port Knocking, the SSH port can be blocked at the 

firewall until the knocking client has sent the correct port 

sequence. Likewise, another port sequence may be used to 

covertly inform the listener that SSH port is no longer needed 

and may be blocked by the firewall yet again. 

B. Port Knocking Example 

Pork Knocking can be configured to nearly any imaginable 

configuration. To exemplify one possible configuration, we 

will use the aforementioned securing of SSH. The sequence 

we will employ is ports 43, 65,010, and 198 (as depicted in 

Figure 1).  

 

  
Figure 1. A Port sequence triggering listener to open port 22 

 The firewall is configured to block all inbound traffic, 

including ports 43, 198, and 65,010. Once the correct 

sequence is blocked by the firewall, the listener acknowledges 

that the knock sequence occurred and dynamically creates a 

firewall rule which allows port 22 from the IP address that 

generated the knocking sequence. Traditionally, a separate 

knocking sequence is used to trigger the listener to remove the 

previously created firewall rule; however, more advanced 

listeners can be configured to remove the rule after a specified 

time [5]. 

C. Port Knocking Downfalls 

Like all security practices, Port Knocking is by no means 

perfect. One well documented problem is the natural 

unreliability of packet sequences. Each packet from a source 

to a destination can take different routes, each potentially 

traveling at different speeds. Though the speed differences for 

each packet may be nanoseconds, the difference may be 

enough to cause one packet to arrive before its former. If this 

were to occur, though the knocker sent out the correct 

sequence, the listener sees a different sequence (one that does 

not match the configuration) and no change to the firewall 

rules is made, as depicted in Figure 2. 

 

  
Figure 2. An out of sequence port knock 

 One simple way to mitigate the sequence issue is to use a 

sequence consisting of only one knocking packet. The obvious 

downfall of this approach is that it is less secure. Port 

Knocking was developed to prevent against port scans from 

uncovering open ports. The logic behind the practice is that it 

is highly unlikely that a port scan, even one trying ports at 

random, would stumble upon the correct sequence (and no 

additional ports attempted during the sequence) [1][2].  

Without the correct sequence, the port scan result would 

find that no services are running, since all connection attempts 

are blocked by the firewall. However, with only one port used 

as the knocking sequence, the listener would create the new 

firewall rule once the scan tries the knocking port; thus, 

allowing the scanner access to the servicing port being 

protected. In such a case, a port scan has a 50% chance of 

scanning the knocking port before the servicing port; thereby, 

exposing the protected service.  

To reduce the likelihood of a port scan uncovering the 

correct sequence, the number of ports in the sequence must be 

increased. The obvious downfall to increasing the number of 

ports is that it also increases the likelihood of one or more 

packets arriving out of sequence. 

The biggest issue plaguing Port Knocking is the fact that it 

is simply an implementation of “security through obscurity” by 

means of covert channels. Just like the covert channel example 

previously mentioned (in which anyone with access to the 

file-lock status and knowledge of its significance could in turn 

understand the message) anyone who can observe the 

knocking sequence can also replicate it for themselves. A 

potential solution to this problem is with the employment of 

cryptography [6][7][8][9]. With encrypted knocking packets, 

sensitive information (such as port number and action) can be 

protected against eavesdroppers. Encryption can even be used 

to protect against replay attacks by including a timestamp and 

the originator’s IP address. 

Unfortunately, all previously proposed options utilize 

symmetric cryptography which has security issues of its own. 

Symmetric cryptography uses the same key for encryption and 

decryption; thus, to read a symmetrically encrypted message 

one must decrypt it with the same key which was used for 

encrypting [10][11]. The process is mathematically 

represented as follows: 

 

  mE KDKm   
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Using Port Knocking with symmetric encryption, at a 

minimum two systems must have the key: the knocker and the 

listener [9][10][11]. They both inherently can encrypt and 

decrypt the message since both transactions use the same key. 

Because the listener is configured to use the key for decryption, 

each knocker must be issued the same key. For this reason, all 

implementations of Port Knocking with symmetric 

cryptography is not a form of authentication, but rather it is 

authorization (the belief that if the payload is encrypted with 

the appropriate key, the knocker must be in the circle of trust 

and, therefore authorized access to the service port). 

 Several weaknesses exist with symmetric encryption; most 

notably key issuance [10]. Because every system requires the 

same key, there must be a means to distribute the key. 

Distribution can be achieved in a multitude of ways: 

sneaker-net, on a controlled network, over the internet through 

a VPN, etc. All methods have no means of limiting the number 

of keys created and no means to ensure that once a key is 

delivered to a knocking agent it is not further distributed. This 

lack of control is the reason Pork Knocking with symmetric 

cryptography is authorization-based—the assumption the key 

has not been provided to unauthorized parties. 

 Other issues with symmetric cryptography are far more 

technical than key distribution; pertaining more to the 

strengths and weaknesses of the protocols in play. The size of 

the encryption key, for instance, plays a significant role in the 

security of an encryption algorithm [10][11]. An algorithm’s 

key size (or “key space”) is the number of bits used for the key, 

which in-turn determines the total number of keys that are 

possible. A 64-bit key has 18,446,744,073,709,551,616 

possible values; however, with systems able to try millions per 

second, finding the correct key is only a matter of time.  

Symmetric cryptography uses small keys in order minimize 

the computational time of the encryption/decryption process 

[10][11]. There is, however, a threshold where key space is 

simply too small because computers can be used to attempt 

every possible key until the correct one is uncovered (referred 

to as a brute-force attack). The Data Encryption Standard 

(DES) is one example of a symmetric encryption algorithm 

whose key size can be uncovered through a brute-force attack 

within a reasonable period time [12].  

 Key size is not the only factor when determining if a 

symmetric encryption algorithm is secure. Not all encryption 

algorithms are equal. The mathematical principles behind the 

algorithms must be sound for it to withstand 

cryptanalysis—the process of uncovering the key by means 

other than brute-force attacks [10]. Microsoft’s LanMan 

hashing algorithm and NSA’s Skipjack algorithm both have 

fallen victim to cryptanalysis [10][12][13]. For these reasons 

the Advanced Encryption Standard (AES) has been suggested 

as an appropriate encryption algorithm, being both 

mathematically sound and supporting sufficient key sizes [11]. 

Even with using AES, potential problems still remain. Any 

symmetric encryption algorithm is susceptible to cryptanalysis 

if the message being encrypted is smaller in size than the 

encryption key since the message is a variable of the 

encryption process [10]. A message shorter than the key size 

will result in an encrypted output (called the “ciphertext”) that 

lacks randomness, allowing some of the key’s bits to be 

inferred. To mitigate this risk a predetermined random 

variable (known as a “salt”) may be used to add randomness to 

the message, but the same salt value must be configured on the 

listener and all the knockers. 

One final concern of symmetric cryptography is 

susceptibility to known-plaintext attack [10]. This attack 

requires knowledge of the message being encrypted and the 

ability to see the ciphertext. Because one employing Port 

Knocking would be concerned with network eavesdroppers, 

this attack warrants interest. While a “salt” does mitigate a 

known-plaintext attack to an extent, if a cryptanalyst is aware 

of what the message should contain, he can in-turn use that 

information to analyze how the message was altered by the key. 

Just as having a message with insufficient length lacks in 

randomness, so too does a message with predictable input.  

By observing the knocking packet(s) and subsequently 

opened port (identified by the next established connection), an 

attacker can gather the information he needs for a 

known-plaintext attack [10][14]. Furthermore, adhering to a 

known standard solidifies the placement of the data within the 

message, allowing the attacker to focus his cryptanalysis on 

the predictable portion. While known-plaintext attacks and 

insufficient message lengths do not reveal the entirety of a 

symmetric key, they reduce the time needed for a brute-force 

attack by a factor of two for each inferred bit of the key. 

III. Single Packet Authentication with 

Asymmetric Cryptography 

A. Asymmetric Cryptography 

1) Overview 

Unlike symmetric cryptography, which uses only one key for 

both the encryption and decryption processes, asymmetric 

cryptography uses two distinct (yet related) keys [10][11]. The 

two keys serve different roles. One of the keys, referred to as 

the “private key,” is solely possessed by the owner of the key. 

If the private key is compromised, all security to be gained 

from the encryption process is lost [10]. The other key, 

however, is by design available to the public (and thus known 

as the “public key”). 

 Where the security of symmetric keys lies in the 

randomness created by their algorithms, asymmetric 

cryptography gets its strength through complex computations 

[10]. Though each algorithm is different, the theory behind 

any asymmetric algorithm is that the complex computations 

are too difficult to calculate within a reasonable period of time 

without both key pairs. By knowing the key pairs, their 

relationship can be determined, greatly simplifying the 

calculation.  

Where symmetric algorithms can typically be proven and/or 

disproven to be mathematically sound, asymmetric algorithms 

rely on the belief that the complex computations cannot be 

solved using a simpler formula [10]. While it is difficult to 

prove that there is a way to simplify the complex calculations 

(which would deem the algorithm insecure), it is impossible to 

prove that there isn’t. In fact, it is always possible that a 

mathematically finding may cause an asymmetric algorithm to 

suddenly hold no merit [15]. 
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 The sound mathematics in symmetric key cryptography is 

what allows for such smaller key size [10]. Asymmetric 

cryptography does not reap the same benefit [10][11]. Because 

asymmetric cryptography relies on the difficulty of complex 

mathematics regarding the relationship of the two keys, it 

in-turn requires very large keys—generally at least 10 times 

the key size of its symmetric counterpart. One reason for the 

greater key size is the fact that not every key pair has a 

mathematical relationship. For instance, an algorithm which 

uses prime numbers in its computation cannot have a key that 

is divisible by anything other than itself and one.  

Using only 6 bits, a symmetric algorithm would allow for 64 

keys to choose from, but of those 64 possible keys only 19 are 

prime numbers. Of those 19 keys, there are sure to be pairs 

which simply do not have a mathematical relationship in the 

asymmetric algorithm. A smaller key size means less possible 

matching key pairs, and therefore, brute-force attacking every 

possible matching private key becomes less cumbersome than 

the complex computation the algorithm uses for its security 

[10]. 

The previously stated weakness of symmetric cryptography 

relating the message size to the key size does not exist in 

asymmetric cryptography [10]. This weakness exists in 

symmetric cryptography because of its procedural 

nature—ciphering/deciphering occurs in a particular sequence 

using the key as a variable. Because asymmetric cryptography 

is not based on a procedure but rather a relationship between 

two keys, the message size cannot be used to reveal any bits of 

the private key. The trade-off, however, is that asymmetric 

cryptography is significantly more taxing on the system than 

symmetric. Because encrypting/decrypting with an 

asymmetric algorithm is more taxing, it is not recommended 

for large messages. 

 The benefits of asymmetric cryptography lie in the fact that 

only one person has the private key [10][11]. Because anyone 

potentially has access to the public key, then anyone can 

encrypt a message using it. An encrypted message can only be 

decrypted by the owner of the corresponding private key. 

Using K for the private key and P for the public key, an 

asymmetric algorithm can be mathematically expressed as 

follows: 

 

  mEPDKm   

 

 On the surface, not much seems different between 

asymmetric and symmetric cryptography. However, where 

symmetric cryptography only protects for integrity, 

confidentiality is additionally enforced through asymmetric 

cryptography [10][11]. Some may argue that symmetric 

cryptography has a degree of confidentiality; although, the 

level of confidentiality would be limited to those individuals 

who have the encryption key (which at a minimum are two: the 

knocker and the listener). Conversely, asymmetric 

cryptography ensures confidentiality down to the individual. 

2) Other Capabilities 

The real power with asymmetric cryptography occurs when 

the sequence is reversed. An individual encrypting their 

message with their private key enables anyone with the public 

key (potentially anyone in the world) to read the message. 

Attempting to tamper with the encrypted message or 

encrypting with a key other than the private key results in the 

message being corrupted during decryption [10]. If the 

message is successfully decrypted it must have been encrypted 

with the corresponding private key, and therefore originating 

from its owner. This inverse use of an asymmetric algorithm is 

expressed as follows:   

 

  mEKDPm   

 

Because only one individual has the private key, they 

personally must have been the one who encrypted the message 

[10][11]. 

Encrypting a message with one’s private key is a digital 

signature; however, tradition digital signatures use a similar 

but slightly more complex application of this approach 

[10][11]. As mentioned before, asymmetric cryptography is 

more taxing on a system than symmetric cryptography; 

therefore, most files are too large to be encrypted in whole. In 

order to reduce the burden of the encryption/decryption 

process, traditional digital signatures use the hash value of the 

file as the message, rather than the original file itself. Through 

this implementation, the digital signature validates the identity 

of who signed it; whereas, the hash value validates the integrity 

of the file. 

 A successful decryption only proves that the keys are a 

legitimate pair. The proof that the owner of the private key is 

whom they claim to be is another matter. The acceptance of a 

key pair’s owner is largely based on trust. Anyone can create 

their own asymmetric key pair, claiming to be someone they 

are not. Whether or not one believes them can be determined 

by who created the key. 

 Trustworthy asymmetric keys are generated by a Certificate 

Authority (CA) [10][11]. In addition to creating the keys, the 

CA also creates a digital certificate; consisting of the public 

key and the CA’s information. The certificate is digitally 

signed by the CA to prove its authenticity.  

The security scheme is quite simple: if one trusts the CA, 

then they can implicitly trust the public key. If there is no 

reason to trust the CA, then there is no reason to trust the 

claimed identity of the certificate (or key pair) they create [10]. 

Several CAs exist for the sole purpose of issuing certificates 

which are considered trustworthy. These trusted CAs require 

applicants to go through a painstaking process to validate the 

applicant’s identity before issuing their certificate. 

Additionally, the CAs are responsible for issuing certificate 

revocations in the event a private key is compromised. Lastly, 

CAs may keep a copy of the private key for key escrow. 

 Rather than pay for the creation of certificates, networks 

which want to exclusively use asymmetric key pairs in-house 

can stand up their own CA. By doing so, each certificate is 

trusted by its network peers since the CA is locally housed and 

controlled. Trying to us the certificate outside the network is 

possible; however, it would likely be ineffective as those 

outside the network have no reason to trust the CA. 

B. Single Packet Authorization 

Port Knocking with Single Packet Authorization was first 

proposed by Michael Rash [8]. The methodology is simple: a 

single packet contains the user’s information (e.g. username 

and password), local timestamp, action requested (open/close 

and port number), and a salt. This information as a whole is 

used to create a hash value. All of this data, including the hash 
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value, is encrypted with the symmetric key and used as the 

packet payload. 

 This system works off the assumption that the symmetric 

key has not been compromised, either during key distribution 

or by cryptanalysis. Of course if the key was compromised, 

then all of the content could be easily changed, making the 

hash value (contained in the payload) moot to that regard. If 

the key is not compromised then the hash value and the 

information used to create it is rendered unreadable to an 

eavesdropper. 

 Working with the assumption that they key is not 

compromised, the listener takes the provided plaintext 

information and generates a hash value using the same hashing 

algorithm [8]. If the hash values match, then the payload is 

likely to not have been altered, and the firewall change is made. 

If the hash value does not match, then no change is made. 

 As mentioned before, this method only provides 

authorization since there is no authentication process in place 

[8][9]. While a user’s information can be passed along this 

way, anyone with access to the symmetric key may view this 

information; thus, the confidentiality of the user’s information 

is limited to the circle of trust associated to the symmetric key. 

To exemplify this, suppose Alice produces her information via 

single packet authorization while Bob eavesdrops on the 

traffic. Because Bob is in the circle of trust, and therefore also 

has the symmetric key, he is able to decrypt and read Alice’s 

information. Bob can then send his own knocking packet with 

the newly acquired information about Alice. Because the same 

key is used, as far as the listener is aware Alice is the one 

requesting access. Both Alice and Bob are authorized to knock 

and make these changes, but nothing validated that Bob is who 

he claims to be. 

C. Port Knocking using Single Packet Authentication 

In February of 2013, I initially proposed the possibility of 

hardening Port Knocking with asymmetric-cryptography 

based authentication, which became the basis of this work [16]. 

Asymmetric cryptography ties a private key to a single owner; 

thus, authentication is a capability that symmetric 

cryptography does not have. By utilizing the private key to 

encrypt data one can ensure the data originated from the owner 

of the private key. Using the aforementioned example, if Bob 

encrypted Alice’s information with his private key, the listener 

would know that Bob was the one making the request even 

though the payload contains Alice’s information. Two 

methods can determine if this has occurred: 1) decrypting the 

data with Alice’s public key or 2) decrypting the data using 

Bob’s public key. If the listener attempts to decrypt with 

Alice’s public key, the message will be corrupted and 

unreadable. If the listener decrypts with Bob’s public key, the 

message will be intact and prove that Bob is the actual sender. 

 In order for a single packet to be used for authentication, all 

pertinent data must be able to be encapsulated in the packet’s 

maximum transmission unit (MTU). The MTU is the 

maximum amount of data which can be used as packet payload, 

as defined by the protocol. Exceeding the MTU will result in 

the data being broken up into multiple packets or outright 

truncated. In addition, because all packet content is readable 

(due to the availability of the public key), measures must be 

made to protect against attack. 

 A replay attack is one where an eavesdropper records the 

packet and launches it again at a later time [9]. One measure 

against a replay attack is to use a timestamp. By synchronizing 

with the same Network Time Protocol (NTP) server, the 

knocker and the listener will have the same system clock time 

(within fractions of a second) [8]. By providing a plaintext 

timestamp and an encrypted version of the timestamp, one can 

ensure that the timestamp was not altered; however, it does not 

prove the packet has been replayed. Since NTP keeps the 

knocker’s and the listener’s clocks synchronized, a margin of 

error can be used to minimize the effects of a replay attack. 

 The difference between the timestamp on the packet and the 

current time is the packet’s latency. This latency can be used to 

detour replay attacks. A maximum latency tolerance of two 

seconds, for example, would provide ample headway for 

bandwidth issues while minimizing susceptibility of a replay 

attack. There is still the possibility of a replay attack occurring 

in the two second window. 

 By adding the IP address in conjunction to the timestamp, 

replay attacks are virtually impossible. If the IP address in the 

packet header does not match the encrypted IP address in the 

payload, then the packet must be a replay attack. Because no 

two systems can have the same IP address at the same time, the 

only way to defeat this approach is for an attacker to position 

himself between the knocker and the listener (known as a 

man-in-the-middle), at which time other attacks can be 

launched.  

Network Address Translation (NAT), however, can cause 

two systems to appear (to the receiver) to have the same IP 

address [9]. NAT is used to allow systems in a Local Area 

Network to use one publicly routable IP address. NAT is used 

in most networks today. As such, a replay attacker and a 

knocker on the same NAT-enabled network would appear to 

be the same system from the listener’s perspective. 

 NAT can cause several issues with single-packet 

authentication. In order for the IP address in the header and 

encrypted version in the payload to match, the knocker must be 

aware that they are being NAT’d [9]. The public IP address 

must be used when creating the encrypted payload, which 

means the knocker must be able to be configured to encrypt a 

specified IP address. Michael Rash’s single packet 

authorization aims at addressing the NAT problem by not 

including the IP address; however, as a result Rash’s method is 

prone to replay attacks [8].  

 Another security concern is firewall rule piggy-backing. By 

observing a Port Knocking sequence of any kind, one can infer 

what port is being opened. Once observed, on subsequent Port 

Knocking transactions an eavesdropper on the same NAT’d 

network can send their own packet to the opened port and gain 

access to the newly opened firewall rule. To protect against 

rule piggy-backing, the latency of the packet can be used to 

automatically close the opened port. For instance, a rule can be 

made to open a port automatically (closing it after twice the 

length of time as the packet latency). Of course, currently open 

sessions must be preserved beyond the packet latency. 

 Where single packet authorization has a means of relaying 

the port number and action (open/close), it is not 

recommended to do so with this method. With single packet 
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authorization, the data is encrypted and only those with the key 

may decrypt the message to see the port number. With single 

packet authentication using asymmetric keys, all of the 

packet’s content may be read by any potential eavesdropper. 

Therefore, revealing the port provides eavesdroppers 

information that could assist them in a 

time-of-request/time-of-use attack.  

 A time-of-request/time-of-use attack takes advantage of the 

gap between the time a resource is requested vice when it is 

actually used. In our case, a time-of-request/time-of-use attack 

gap is the time between when the knocking packet is received 

(in turn, changing the firewall rules) and when the firewall rule 

is actually used. The listener acknowledges the knock by 

allowing the next connection to the protected service within 

the threshold time. The rule is dynamically created and only 

allows traffic from the IP address referenced in the knocking 

packet.  

 As mentioned before, all traffic from systems on a network 

utilizing NAT will seem to be coming from the same publicly 

routable IP address. Working with the assumption that the port 

and action are contained in the knocking packet, and the 

knocker is on such a network, any other system which can see 

the knocking packet can in-turn craft its own connection 

attempt, effectively beating the knocking system to the punch.  

NAT is not the only concern with 

time-of-request/time-of-use attacks. Any system in which all 

traffic between the knocker and the listener must flow can 

conduct its own attacks. Because this man-in-the-middle 

system can actually interfere with all the traffic, it could allow 

the knocking packet to flow as intended, but subsequently drop 

the knocker’s connection attempt to the protected service. 

Obviously doing so can easily create a denial-of-service attack, 

but it also enables the man-in-the-middle to launch its own 

connection to the protected service. 

By keeping the port out of the knocking packet’s contents, a 

NAT time-of-request/time-of-use attack is mitigated. All 

implementations of Port Knocking are susceptible to 

man-in-the-middle attacks since the man-in-the-middle system 

can spoof the knocker’s IP address, knowing that reply packets 

must be routed through it. In such a case, because all traffic 

must be routed through the man-in-the-middle, it is able to 

maintain connections without the interaction of the knocking 

system. Since the man-in-the-middle can also drop any packets 

it wishes, it can prevent the knocker and listener from being 

able to communicate, and neither party is aware that the 

man-in-the-middle attack is even occurring. 

Like more traditional port-knocking schemes, single-packet 

authentication must rely on some form of covert channels to 

convey the port to be opened. The most secure means is 

through the port used in the knocking sequence. Using a 

pre-configured setting, both the knocker and the listener know 

which knocking port corresponds to which port to open. By 

allowing only a single connection per knock, the action is 

always to open the port, and upon connection or timeout 

threshold (whichever occurs first), the port is closed. Since this 

transcription method is easily detected by an eavesdropper, 

another covert channel is possible through the timestamp. The 

milliseconds of the timestamp can be used for a similar 

transcription scheme. Doing so would require a larger timeout 

threshold since latency cannot be calculated as accurately as 

when the milliseconds are not used in a transcription scheme. 

IV. Proof of Concept 

The basis of this work is derived from a blog post I wrote in 

February of 2013, where I outlined the possibility of utilizing 

asynchronous keys with Port Knocking for identification 

purposes [16]. In an attempt to test Port Knocking with single 

packet authentication for practicality I conducted a series of 

experiments. The experiments were mock-ups of a single 

packet knock consisting of a signature and sender’s certificate. 

For the experiment, the knocking system and the listening 

system were geographically separated using the Internet cloud 

as the infrastructure. In addition, the knocker was behind a 

NAT device. 

As mentioned previously, an attacker could exploit the 

vulnerability NAT creates and conduct their replay attack from 

within the same NAT’d network within the two second 

window. For this reason, my experiments used the IP address, 

TCP sequence numbers (both listed in the packet header), and 

timestamps as the plaintext message encrypted with the private 

key (thus creating a digital signature). Though the 

experimental system was never configured to this constraint, 

the intent is that only the first unique packet would be 

acknowledged, as the chances of the same sequence number 

being used in two connections originating from the same IP 

address with the same timestamp are astronomical. By doing 

so, replay attacks are thwarted. 

As described earlier, the signature included in the packet’s 

payload consists of the IP address, the TCP sequence number, 

and a UNIX timestamp including the milliseconds (as depicted 

in Figure 3). 

  
Figure 3. Single Packet Authentication packet contents. 

The three data fields are then encrypted using the sender’s 

private key, creating a signature. The remainder of the 

packet’s payload consists of the sender’s certificate 

(containing both their public key and the information about the 

Certificate Authority which issues the key pair). 

A. Creation of Keys and Certificates 

To remain in line with common practices on the internet, I 

decided on using the RSA asymmetric encryption algorithm. A 

script was created leveraging OpenSSL to generate 100 key 

pairs, along with a corresponding certificate and signature 

mockup. In the creation of the signatures, rather than 

generating them on-the-fly using the packet details (as 

specified above), the signature was created using mock data 

consisting of the UNIX timestamp in milliseconds and an 

ASCII string the same size as the IP address and sequence 

number. Upon experimentation, it was determined that there is 

no physical size difference for a signature using IPv4 data vice 

IPv6 data, as the size was the same in either case. An example 

of the script is seen in Figure 4. 
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Figure 4. Script generating RSA keys, certificates, signatures, 

and payload. 

 Line 6 of the script depicted in Figure 3 generates 1024 bit 

keys. Adjusting that line allowed for various experiments 

using different key sizes as the only variable. Line 8 uses a file 

named input.txt in order to respond to the certificate 

generation process, answering the questions such as location, 

country, name, and email address. The signature is created in 

line 12 and validated against the plaintext in line 18. 

Modern practices for asymmetric key size are generally 

1024 bits or more, with the current recommended size being 

2048 bit. These experiments tested several key sizes to 

determine their impact on the signature size they each create as 

well as the digital certificate, as shown is Table 1. 

 

Key Size Signature Certificate Total Payload 

1024 bits 128 bytes 1188 bytes 1316 bytes 

2048 bits 256 bytes 1541 bytes 1797 bytes 

3072 bits 384 bytes 1887 bytes 2271 bytes 

Table 1. Single Packet Authentication signature contents. 

To ensure the validity of the data in Table 2, keys were 

created on several systems at various times between February 

and October 2013. While 2048 and 3072 bit keys required 

actual values in the input.txt file, 1024 bit keys could be 

created with NULL values; however, it created certificates of 

1379 bytes making the payload 1507. These certificates, 

unlikely in actual application, later proved to not be optimum 

in the experimentation. 

B. Testing the Listener Trigger 

In order to test the listener, I first needed the ability to send 

specially crafted packets to the listener. For this, I used 

Hping3—a packet generator and analyzer. Hping3 is a 

command-line open-source program which can create packets 

using a wide variety of options [14]. Pertinent to the 

experiments are the options to specify destination, packet 

count, port, packet size, and payload, as depicted below in 

Figure 5. 

 

  
Figure 5. Hping3 example syntax. 

Like a traditional knocking packet, the packet depicted in 

Figure 4 was crafted as a TCP SYN packet, which would seem 

to be a connection attempt to any eavesdropper. The 

destination port was 78, using TCP as the default protocol. 

Only one packet was sent, consisting of the contents of the 

payload.txt file.  

It is important to note that while one packet was sent, none 

were received. The reason there was no acknowledgement 

packet was because of a firewall rule set to block all ports. The 

next step was to validate that the packet was complete in its 

entirety, by capturing inbound traffic on the listener. A copy of 

the captured packet payload received by the listener appears as 

follows: 
 
E....\..7...D2.w.B...0....rR"...P.......5...2D1..}.
...GhE.Y...*...t..1..>..._.g.7...,[.D...w.8.0..*.).
....EG.=d.N.{=p....>w..}.y..U..K...wp..q.....H.H.D.
.......k...l?.<-----BEGIN.CERTIFICATE-----.MIICtjCC
Ah+gAwIBAgIJAI0BLpsrpVBJMA0GCSqGSIb3DQEBBQUAMHQxCzA
JBgNV.BAYTAlVTMQswCQYDVQQIDAJJTDENMAsGA1UEBwwEVGVzd
DENMAsGA1UECgwEVGVz.dDENMAsGA1UECwwEVGVzdDENMAsGA1U
EAwwEVGVzdDEcMBoGCSqGSIb3DQEJARYN.dGVzdEB0ZXN0LmNvb
TAeFw0xMzEwMDYyMTE0MjNaFw0xNDEwMDYyMTE0MjNaMHQx.CzA
JBgNVBAYTAlVTMQswCQYDVQQIDAJJTDENMAsGA1UEBwwEVGVzdD
ENMAsGA1UE.CgwEVGVzdDENMAsGA1UECwwEVGVzdDENMAsGA1UE
AwwEVGVzdDEcMBoGCSqGSIb3.DQEJARYNdGVzdEB0ZXN0LmNvbT
CBnzANBgkqhkiG9w0BAQEFAAOBjQAwgYkCgYEA.6AsT9VRsySJW
nlgwQrFF8ZUMxgXmqWgwDyVkSCtxrZ7ULIf2o55M5B/VnRE5LB4
g.1u0oHIqAbH/OcBW+9scBpm69m3nT7QutSlGLnWuP2OyAScRbl
D9z6ffCZC1GfbOS.CRcpLtGaREQnwkcfAXGrzgDNhZ2rzS2g8lL
dRr78MesCAwEAAaNQME4wHQYDVR0O.BBYEFFCN9I+4ppgjBQkIq
k5B/o/Yw8P+MB8GA1UdIwQYMBaAFFCN9I+4ppgjBQkI.qk5B/o/
Yw8P+MAwGA1UdEwQFMAMBAf8wDQYJKoZIhvcNAQEFBQADgYEAZP
S9OTB/.3XXXahLITLHfmMloQh8X40WzdkJof4ObLToub/Hl06+y
QECshPGKHJC2bZLd0tQp.xLkvK8sQEDJZNZij5PPO+6iYj571jT
fBrJH7ZpWtMzk3RtSyzZeH0uJEjHxZuWbz.S58IoLvlv84GxZfK
O2iyuMDCVsaxsUEpDGA=.-----END.CERTIFICATE-----.....
...................................................
...................................................
...................................................
...................................................
...................................................
............................................ 

 The captured packet contained the entire payload, with null 

value after the certificate (represented with a “.”). All data 

prior to the certificate is the signature, consisting of the 

encrypted timestamp, source IP, and sequence number 

placeholders. The signature and the certificate itself can easily 

be extracted from the packet using regular expressions parsing. 

Therefore, the packet contains all the information necessary 

for the listener to be triggered. 

C. Findings 

Though a success, the proof-of-concept experiments shed light 

to some hurdles which need to be overcome in implementation. 

Upon experimentation, it was discovered that 1500 bytes was 

the maximum packet size which was able to be transmitted, as 

it is the MTU of Ethernet (the Data-Link layer protocol for 

both the knocker and the listener). Though TCP’s MTU limit 

accommodates for any of the tested key sizes, truncation 

occurred on the packets larger than the Data-Link MTU. The 

only certificates which were small enough to fit inside the 

constraints of Ethernet were 1024 bit keys, which are quickly 

being replaced by the 2048 bit key standards in practical use.  

 It is possible to overcome the Ethernet MTU limit by 

including the signer’s public key rather than the certificate. 

Like the certificate, the public key can be easily parsed since it 

contains a similar preceding and tailing identifier string. Most 

importantly, the public key for a 3072 bit key can easily fit in 

the MTU of Ethernet. The downfall for this approach is quite 

obvious: trust is established by the digital certificate and it’s 

CA. However, since a port-knocking deployment is intended 

for members of a selected group, they would all pull from the 

same CA.  
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By using an in-house CA, the listener would be able to 

cross-reference the public key with keys that have been issued 

by the CA. Since it is highly unlikely that two members have 

been issued the same public key, the certificate will likely be 

found. However, querying the CA for key information may be 

too time-consuming for Port Knocking uses. Alternatively, the 

listener can be configured with the certificates of its knockers 

locally, resulting in faster cross-referencing. These approaches 

becomes more flawed as the number of created keys increases 

since the likelihood of two certificates using the same public 

key also increases. Therefore, it is recommended to only use 

this approach for smaller networks which require fewer keys to 

be generated and thus cross-referenced. 

 The experiments also proved that the standard firewall log 

levels cannot be used to extract the contents of a packet. Two 

possible approaches compensate for this issue. The first 

approach would be to modify the firewall logs to include the 

payload of blocked traffic. Doing so, however, could cause 

substantially larger logs generated during a port scan or similar 

network attacks occurs. It is possible to streamline the logging 

process, minimizing the amount of denied traffic while still 

maintaining a longer history of potentially more relevant logs.  

Another approach is to build the listener into the firewall 

itself. By building the listener into the firewall, the time delay 

between packet reception, analysis, and rule-modification is 

optimized. However, this would in-turn provide a mechanism 

for the firewall to modify its own rule, which potentially create 

other security issues. 

V. Future Work 

Where there are several Port Knocking suites available, this 

experiment utilized shell scripts rather actual applications. It is 

quite feasible to either incorporate this implementation into an 

existing Port Knocking suite or develop a solution from 

scratch [5][8]. A live program operating in memory is sure to 

prove more responsive than simple scripts. 

The limiting factor in the experiment was the use of 

Ethernet as the Data-Link protocol. Other protocols exist 

which allow for a higher MTU; but, currently Ethernet is the 

de facto Data-Link protocol. As technology changes, it is 

possible that another protocol will become common; one 

which allows for a larger MTU.  

As mentioned previously, RSA was used in this experiment 

because of its widespread use on the Internet. Elliptic Curve 

Cryptography (ECC) is an asymmetric algorithm which has 

significantly smaller certificate [16]. It is possible that much 

stronger ECC keys may be used in lieu of RSA while still 

fitting within the Ethernet MTU limitation. 

 Though the proof-of-concept test used TCP, it is possible to 

implement Port Knocking with single packet authentication 

relying upon any IP-based protocol. UDP, for instance, can 

conserve 12 bytes for additional payload content; however, the 

use of sequence number is a TCP-specific implementation. 
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